Números complejos: Definición (1ºBach)
De Wikipedia
Revisión de 11:49 2 oct 2016 Coordinador (Discusión | contribuciones) (→Representación gráfica de los complejos en forma binómica) ← Ir a diferencia anterior |
Revisión de 11:50 2 oct 2016 Coordinador (Discusión | contribuciones) (→Representación gráfica de los complejos en forma binómica) Ir a siguiente diferencia → |
||
Línea 242: | Línea 242: | ||
}} | }} | ||
{{p}} | {{p}} | ||
- | Esta forma de representar los números complejos se la debemos a [[Gauss]], matematico del siglo XIX. No obstante, en el siglo XVIII, el matemático danés [[Caspar Wessel]] había tenido la misma idea y la plasmó en sus tesis doctoral, aunque pasó absolutamente inadvertida. En 1806 Argand interpreta los números complejos como vectores en el plano. | + | Esta forma de representar los números complejos se la debemos a [[Gauss]], matematico del siglo XIX. No obstante, en el siglo XVIII, el matemático danés [[Caspar Wessel]] había tenido la misma idea y la plasmó en sus tesis doctoral, aunque pasó absolutamente inadvertida. En 1806 [[Argand]] interpreta los números complejos como vectores en el plano. |
{{p}} | {{p}} | ||
{{Teorema_sin_demo|titulo=Propiedades|enunciado= | {{Teorema_sin_demo|titulo=Propiedades|enunciado= |
Revisión de 11:50 2 oct 2016
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(Pág. 148)
Breve historia de los números complejos
Los números que hoy llamamos “complejos” fueron durante muchos años motivo de polémicas y controversias entre la comunidad científica. Poco a poco, por la creciente evidencia de su utilidad, acabaron por ser aceptados, aunque no fueron bien comprendidos hasta épocas recientes. Nada hay de extraño en ello si pensamos que los números negativos no fueron plenamente aceptados hasta finales del siglo XVII.
Los números complejos hacen sus primeras tímidas apariciones en los trabajos de Cardano (1501–1576) y Bombelli (1526–1572) relacionados con el cálculo de ecuaciones de tercer grado. Fue Descartes (1596–1650) quien afirmó que “ciertas ecuaciones algebraicas sólo tienen solución en nuestra imaginación” y acuñó el calificativo imaginarias para referirse a ellas. Leibniz decía de los números imaginarios que eran "una especie de anfibios entre el ser y la nada". Desde el siglo XVI hasta finales del siglo XVIII los números complejos o imaginarios son usados con recelo, con desconfianza. Con frecuencia, cuando la solución de un problema resulta ser un número complejo esto se interpreta como que el problema no tiene solución. Las razones de todo esto son claras. Así como los números reales responden al problema cotidiano de la medida de magnitudes, no ocurre nada similar con los números complejos. Mientras los matemáticos necesitaron interpretar en términos físicos sus objetos de estudio, no se avanzó mucho en la comprensión de los números complejos. El éxito de Euler y Gauss al trabajar con números complejos se debió a que ellos no se preocuparon de la naturaleza de los mismos; no se preguntaron ¿qué es un número complejo?, sino que se dijeron ¿para qué sirven?, ¿qué puede hacerse con ellos? Es Gauss quien definitivamente concede a los números complejos un lugar privilegiado dentro de las matemáticas al probar en 1799 el conocido como Teorema Fundamental del álgebra que afirma que toda ecuación polinómica de grado n con coeficientes complejos tiene, si cada raíz se cuenta tantas veces como su orden, n raíces que también son números complejos. El término, hoy usado de “números complejos” se debe a Gauss, quien también hizo popular la letra “i” que Euler había usado esporádicamente. |
La unidad imaginaria
Primero aprendiste a "contar" como un autómata, a modo de mantra: uno, dos, tres, .... Aprendiste a distinguir los correspondientes "símbolos": 1, 2, 3, .... Después llegó el mágico "cero" con su símbolo 0, y con él los números negativos: -1, -2. -3, .... A continuación llegaron las fracciones (y con ellas los números racionales: enteros, decimales exactos y decimales periódicos) y los números irracionales (tienen infinitos decimales y no son periódicos). Por último, llegaron los números reales (unión de los racionales y los irracionales).
Hay ecuaciones como
que no tienen solución en el conjunto de los números reales (no existe en )
Vamos a definir un nuevo conjunto que amplie al conjunto de los números reales y en el cual estas ecuaciones si tengan solución. Ese conjunto va a ser el conjunto de los números complejos. Para ello habrá que a empezar dando sentido a las raíces de números negativos. Se denomina unidad imaginaria a . Se designa por la letra .
Con esta definición, la ecuación anterior ahora si tiene solución "imaginaria":
|
Potencias de la unidad imaginaria
Actividad: La unidad imaginaria a) Calcula: . b) Resuelve la ecuación en el conjunto de los números reales. c) Resuelve la ecuación en el conjunto de los números complejos. Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: a) i^(15) b) solve x^2+9=0 over the reals c) solve x^2+9=0 o solve x^2+9=0 over the complexes |
El conjunto de los números complejos
Definimos el conjunto de los números complejos de la siguiente manera:
Forma binómica de un número complejo
- La expresión se denomina forma binómica de un número complejo.
- Si escribimos , entonces:
- se le llama parte real o componente real y se denota .
- se llama parte imaginaria o componente imaginaria y se denota ..
- Si , lo que tenemos es un número real, por tanto .
- Si , lo que tenemos no es un número real, se llama número imaginario.
- Si y , se le llama número imaginario puro.
Igualdad de números complejos
Dos números complejos en forma binómica decimos que son iguales si tienen iguales sus partes reales y sus partes imaginarias.
Opuesto y conjugado de un complejo
- Se define el opuesto de un complejo como el número complejo .
- Se define el conjugado de un complejo como el número complejo .
Proposición
- Cualquier ecuación de segundo grado con coeficientes reales que no tenga solución real tiene dos soluciones imaginarias que son números complejos conjugados.
- Necesidad y definición de los números complejos.
- La unidad imaginaria.
- Forma binómica de un complejo.
- Números imaginarios puros.
- Conjugado y opuesto de un complejo.
- Igualdad de números complejos.
1.Resuelve las siguiente ecuaciones:
- a) 4x + 3i = 8 + 3i
- b) 5 + 2xi = (x + 2) + 6i
- c) 5 + 2xi = (x − 2) + 6i
2. Calcula:
- a) El conjugado del opuesto de 3 − 4i
- b) El opuesto del conjugado de − 3 + 6i
- c) El conjugado del conjugado de 6 − 2i
- d) El opuesto del opuesto de 5 − πi
(Pág. 149)
Representación gráfica de los complejos en forma binómica
Para representar los números reales utilizabamos una recta, la recta real.
Para representar los números complejos vamos a utilizar un plano, el plano complejo. Un número complejo en forma binómica queda determinado por un par de números reales: su parte real, y su parte imaginaria, .
Propiedades
El plano complejo (3´50") Sinopsis:
Esta forma de representar los números complejos se la debemos a Gauss, matematico del siglo XIX. No obstante, en el siglo XVIII, el matemático danés Caspar Wessel había tenido la misma idea y la plasmó en sus tesis doctoral, aunque pasó absolutamente inadvertida. En 1806 Argand interpreta los números complejos como vectores en el plano. Propiedades
2 ejercicios (8´00") Sinopsis: Representa los complejos z1 = 3 − 2i , z2 = − 1 + 3i , sus opuestos y sus conjugados. |
Representa en tu cuaderno los siguientes números complejos, sus opuestos y sus conjugados. Comprueba tus representaciones en la escena:
Los números complejos se representan mediante vectores. Al extremo del vector se le llama afijo del complejo.
Por ejemplo, el afijo del número complejo es el punto .
En el eje horizontal representamos la parte real del número complejo, por eso se le llama eje real . En el eje vertical representamos la parte imaginaria del número complejo, por eso se le llama eje imaginario.
Mueve con el ratón el afijo del número complejo de esta escena y podrás ver su representación gráfica por un vector. Si quieres representar un número complejo de forma más exacta, puedes introducir las coordenadas del punto pulsando con el botón derecho sobre él y eligiendo "propiedades" en el menú.
Para ver el conjugado y el opuesto marca la casilla correspondiente.
Calcula las siguientes potencias de i en tu cuaderno, representa gráficamente los resultados y compruébalo todo en la escena:
En esta escena puedes ver , y su representación gráfica.
Cambia el valor de n en la parte inferior para ver las sucesivas potencias de .
El ordenador los ha puesto de moda. Y sin embargo ya eran conocidos a principios de siglo. Nos referimos a los fractales. Son los objetos matemáticos más atractivos, espectaculares y enigmáticos. A medio camino entre la linea y el plano, entre el plano y el espacio, rompen hasta con el concepto clásico de dimensión. Sus dimensiones no son números enteros, de ahí su extraño nombre. Y sin embargo se pueden obtener mediante simples iteracciones, es decir, repitiendo indefinidamente procedimientos geométricos o funcionales muy simples. Han dado origen a una nueva geometría: la geometría fractal. Una nueva herramienta matemática capaz de arrojar un poco de luz sobre los fenómenos caóticos y de mostrarnos que incluso en el caos es posible encontrar un determinado orden. Algunos fractales son representados en el plano complejo, como los conjuntos de Mandelbrot y de Julia.
Ejercicios propuestos
Ejercicios propuestos: Definición de número complejo |