Plantilla:Sistemas de ecuaciones de primer grado

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:46 30 oct 2016
Coordinador (Discusión | contribuciones)
(Método de reducción)
← Ir a diferencia anterior
Revisión de 17:47 30 oct 2016
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 3: Línea 3:
{{p}} {{p}}
==Sistemas equivalentes== ==Sistemas equivalentes==
-{{Caja Amarilla|texto=+{{Sistemas equivalentes}}
-Dos sistemas son '''equivalentes''' cuando tienen las mismas soluciones.}}+
{{p}} {{p}}
-{{AI2|titulo=Actividad Interactiva: ''Sistemas equivalentes''|cuerpo= 
-{{ai_cuerpo 
-|enunciado='''Actividad 1:''' Obteniendo sistemas equivalentes. 
-|actividad= 
-Dado el siguiente sistema  
-<center><math>\left . \begin{matrix} 2x-y=6 \\ 3x+3y=18 \end{matrix} \right \}</math></center> 
- 
-a) Represéntalo gráficamente.  
- 
-b) Multiplica la primera ecuación por 3 y divide la segunda por 3. Representa el nuevo sistema.  
- 
-c) Resta a la 2ª ecuación la 1ª ecuación y representa sobre la gráfica anterior la nueva ecuación.  
- 
-d) Suma a la 1ª ecuación la 2ª multiplicada por 5 y representa la nueva ecuación en la gráfica anterior.  
- 
-e) Comprueba el proceso en la siguiente escena: 
- 
-<center><iframe> 
-url=http://maralboran.org/web_ma/descartes/Algebra/Sistemas_ecuaciones_lineales/sistema_1.html 
-width=450 
-height=340 
-name=myframe 
-</iframe></center> 
-<center>[http://maralboran.org/web_ma/descartes/Algebra/Sistemas_ecuaciones_lineales/sistema_1.html '''Click''' aquí si no se ve bien la escena]</center> 
- 
-}} 
-}} 
-{{p}} 
- 
==Número de soluciones de un sistema== ==Número de soluciones de un sistema==
{{Caja Amarilla|texto= {{Caja Amarilla|texto=

Revisión de 17:47 30 oct 2016

Tabla de contenidos

Sistemas de ecuaciones lineales 2x2

  • Un sistema de dos ecuaciones de primer grado con dos incógnitas o simplemente, sistema 2x2 de ecuaciones lineales, es la agrupación de dos ecuaciones de primer grado con dos incógnitas:
\left . \begin{matrix} ax+by=c \\ a'x+b'y=c'\end{matrix} \right \}
  • Se llama solución de un sistema 2x2, a cualquier pareja de valores (x,y)\; que sea solución de ambas ecuaciones a la vez. Las soluciones de este tipo de sistemas son los puntos de corte de las rectas que representan cada una de las ecuaciones del sistema.

ejercicio

Ejemplo: Solución de un sistema de ecuaciones


Comprueba si las parejas de números (1,2) y (-1,3) son o no soluciones del sistema:

\left . \begin{matrix} 5x+y=-2 \\ -x+y=4 \end{matrix} \right \}

Sistemas equivalentes

Dos sistemas son equivalentes cuando tienen las mismas soluciones.

Al igual que hicimos con las ecuaciones, para resolver sistemas, obtendremos otros equivalentes más sencillos de resolver que el de partida. Para ello utilizaremos las siguientes técnicas.

ejercicio

Transformaciones que mantienen la equivalencia de los sistemas


  1. Si se suma o resta a ambos miembros de una ecuación de un sistema una misma expresión, el sistema resultante es equivalente.
  2. Si se multiplican o se dividen ambos miembros de un sistema por un número distinto de cero el sistema resultante es equivalente.
  3. Si se suma o resta a una ecuación del sistema otra ecuación del sistema el sistema resultante es equivalente.



Número de soluciones de un sistema

  • Un sistema es compatible si tiene solución e incompatible si no la tiene.
  • Un sistema es determinado si tiene un número finito de soluciones e indeterminado si tiene infinitas soluciones.
  • Usaremos las siguientes siglas para abreviar:
    • S.C.D. : Sistema Compatible Determinado (un número finito de soluciones)
    • S.C.I. : Sistema Compatible Indeterminado (infinitas soluciones)
    • S.I. : Sistema Incompatible (sin solución)

ejercicio

Número de soluciones de un sistema 2x2 de ecuaciones lineales


Un sistema 2x2 de ecuaciones lineales puede ser:

  • Compatible determinado (S.C.D.): 1 solución
  • Compatible indeterminado (S.C.I.): Infinitas soluciones.
  • Incompatible (S.I): 0 soluciones.

En la siguiente actividad veremos un ejemplo de cada uno de los tres casos anteriores.

ejercicio

Actividad Interactiva: Soluciones de un sistema


Actividad 1: Sistema incompatible.
Actividad 2: Sistema compatible indeterminado.
Actividad 3: Sistema compatible determinado.

Métodos de resolución de sistemas

Vamos a ver cuatro métodos para resolver un sistema de ecuaciones: Uno gráfico y tres algebraicos (sustitución, igualación y reducción).

Método grafico

ejercicio

Procedimiento


Para resolver un sistema de ecuaciones lineales, representaremos gráficamente las rectas de las soluciones de cada una de las ecuaciones:

  • Si las rectas se cortan, el punto de corte será la única solución del sistema.
  • Si las rectas son paralelas, el sistema no tendrá solución.
  • Si las rectas son coincidentes, el sistema tendrá infinitas soluciones.

Método de sustitución

ejercicio

Procedimiento


Para resolver un sistema por el método de sustitución se siguen los siguientes pasos:

  1. Se despeja una incógnita en una de las ecuaciones (la que resulte más fácil de despejar).
  2. Se sustituye la incógnita despejada en (1) en la otra ecuación, obteniendo una ecuación con una sola incógnita.
  3. Se resuelve la ecuación obtenida en (2), averiguando así una de las incógnitas del sistema.
  4. El valor obtenido en (3) se sustitute en la expresión de la incógnita despejada en (1), averiguando así el valor de la incógnita que faltaba, y, por tanto, resolviendo el sistema.

ejercicio

Ejemplo: Método de sustitución


Resuelve por el método de sustitución el siguiente sistema:

\left . \begin{matrix} x-y=6 \\ 3x+2y=13 \end{matrix} \right \}

Método de igualación

ejercicio

Procedimiento


Para resolver un sistema por el método de igualación se siguen los siguientes pasos:

  1. Se despeja la misma incógnita en las dos ecuaciones del sistema.
  2. Se igualan las expresiones obtenidas en (1), con lo que se obtiene una ecuación con una sola incógnita.
  3. Se resuelve la ecuación obtenida en (2), averiguando así una de las incógnitas del sistema.
  4. El valor obtenido en (3) se sustitute en una de las dos expresiones de la incógnita despejada en (1), averiguando así el valor de la incógnita que faltaba, y, por tanto, resolviendo el sistema.

ejercicio

Ejemplo: Método de igualación


Resuelve por el método de igualación el siguiente sistema:

\left . \begin{matrix} 5x+12y=6 \\ 3x+2y=2 \end{matrix} \right \}

Método de reducción

ejercicio

Procedimiento


Para resolver un sistema por el método de reducción o eliminación se siguen los siguientes pasos:

  1. Se obtiene un sistema equivalente al de partida, multiplicando las dos ecuaciones por números apropiados, de manera que una de las incógnitas quede con coeficentes opuestos en ambas ecuaciones.
  2. Se suman las ecuaciones del nuevo sistema, desapareciendo así la incógnita con coeficientes opuestos.
  3. Se resuelve la ecuación obtenida en (2), averiguando así una de las incógnitas del sistema.
  4. El valor obtenido en (3) se sustitute en una de las dos ecuaciones del sistema de partida, averiguando así el valor de la incógnita que faltaba, y, por tanto, resolviendo el sistema.

ejercicio

Ejemplo: Método de reducción


Resuelve por el método de reducción el siguiente sistema:

\left . \begin{matrix} 3x+2y=7 \\ 4x-3y=15 \end{matrix} \right \}

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda