Las cónicas (1ºBach)
De Wikipedia
Revisión de 19:48 18 nov 2016 Coordinador (Discusión | contribuciones) (→Excentricidad de una cónica) ← Ir a diferencia anterior |
Revisión de 19:49 18 nov 2016 Coordinador (Discusión | contribuciones) (→Secciones cónicas) Ir a siguiente diferencia → |
||
Línea 7: | Línea 7: | ||
{{p}} | {{p}} | ||
==Secciones cónicas== | ==Secciones cónicas== | ||
- | {{Tabla75|celda2=[[Imagen:Cono y secciones.jpg|220px|center]] | + | {{secciones cónicas}} |
- | |celda1= | + | |
- | {{Caja_Amarilla|texto=Se denomina '''sección cónica''' a la curva intersección de un cono con un plano que no pasa por su vértice. | + | |
- | + | ||
- | Según como corte el plano al cono tendremos (ver figura): | + | |
- | + | ||
- | *'''Hipérbola:''' el plano forma con la base un ángulo mayor que el que forma la generatriz. | + | |
- | *'''Parábola:''' el plano es paralelo a la generatriz. | + | |
- | *'''Elipse:''' el plano forma con la base un ángulo menor que el que forma la generatriz. | + | |
- | *'''Circunferencia:''' el plano es paralelo a la base. | + | |
- | }} | + | |
{{p}} | {{p}} | ||
- | La primera definición de sección cónica aparece en Grecia, cerca del año 350, donde las definieron como secciones de un cono circular recto. Los nombres de hipérbola, parábola y elipse se deben a [[Apolonio |Apolonio de Pérgamo]]. | ||
- | A continuación vamos a ver definir las secciones cónicas como lugares geométricos de puntos del plano. | ||
- | }} | ||
- | {{p}} | ||
==Las cónicas como lugares geométricos== | ==Las cónicas como lugares geométricos== | ||
===Circunferencia=== | ===Circunferencia=== |
Revisión de 19:49 18 nov 2016
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Secciones cónicas
Se denomina sección cónica a la curva intersección de un cono con un plano que no pasa por su vértice. Según como corte el plano al cono tendremos (ver figura):
La primera definición de sección cónica aparece en Grecia, cerca del año 350, donde las definieron como secciones de un cono circular recto. Los nombres de hipérbola, parábola y elipse se deben a Apolonio de Pérgamo. A continuación vamos a ver definir las secciones cónicas como lugares geométricos de puntos del plano. |
Las cónicas como lugares geométricos
Circunferencia
La circunferencia de centro y radio , es el lugar geométrico de los puntos , del plano, cuya distancia al centro es .
Trazado de la circunferencia Descripción: En esta escena podrás ver como se dibuja una circunferencia. Par más detalles consulta el tema de la circunferencia. |
Elipse
Dados dos puntos y llamados focos, y una distancia , llamada constante de la elipse (), se llama elipse al lugar geométrico de los puntos del plano cuya suma de distancias a los focos es igual a :
Trazado de la elipse Descripción: En esta escena podrás ver como construye una elipse. Par más detalles consulta el tema de la elipse. |
Hipérbola
Dados dos puntos y llamados focos, y una distancia , llamada constante de la hipérbola (), se llama hipérbola al lugar geométrico de los puntos del plano cuya diferencia de distancias a los focos es, en valor absoluto, igual a :
Trazado de la hipérbola Descripción: En esta escena podrás ver como construye una hipérbola. Par más detalles consulta el tema de la hipérbola. |
Parábola
Dados un punto llamado foco, y una recta , llamada directriz, se llama parábola al lugar geométrico de los puntos del plano que equidistán del foco y de la directriz:
Trazado de la parábola Descripción: En esta escena podrás ver como construye una parábola. Par más detalles consulta el tema de la parábola. |
Ecuaciones de las cónicas
Proposición
A partir de las ecuaciones de los lugares geométricos anteriormente vistos, las cónicas se expresan en forma algebraica mediante ecuaciones cuadráticas de dos variables (x,y) de la forma:
|
en la que, en función de los valores de los parámetros, se tendrá:
- Hipérbola: si
- Parábola: si
- Elipse: si
- Circunferencia: si y
Excentricidad de una cónica
Las órbitas de los planetas y de los cometas:
|