Las funciones y sus gráficas (3ºESO Académicas)
De Wikipedia
Revisión de 17:15 3 jun 2017 Coordinador (Discusión | contribuciones) (→Dominio e imagen de una función) ← Ir a diferencia anterior |
Revisión de 17:18 3 jun 2017 Coordinador (Discusión | contribuciones) (→Cortes con los ejes y signo e una función) Ir a siguiente diferencia → |
||
Línea 19: | Línea 19: | ||
{{Definición: Dominio e imagen}} | {{Definición: Dominio e imagen}} | ||
{{p}} | {{p}} | ||
- | ==Cortes con los ejes y signo e una función== | + | ==Puntos de corte con los ejes y signo e una función== |
+ | {{Video_enlace_clasematicas | ||
+ | |titulo1=Puntos de corte con los ejes de una función | ||
+ | |duracion=3'35" | ||
+ | |url1=https://www.youtube.com/watch?v=FaNynCkCmkc&index=7&list=PLZNmE9BEzVIkfJ32AmaQoob2npxScGpo3 | ||
+ | |sinopsis=Tutorial en el que se explica el cálculo de los puntos de corte con los ejes de una función dada su gráfica. | ||
+ | }} | ||
+ | {{Video_enlace_clasematicas | ||
+ | |titulo1=Puntos de corte con los ejes de una función | ||
+ | |duracion=6'34" | ||
+ | |url1=https://www.youtube.com/watch?v=qaOvRwNOIuk&index=9&list=PLZNmE9BEzVIkfJ32AmaQoob2npxScGpo3 | ||
+ | |sinopsis=Tutorial en el que se explica el estudio del signo de una función dada su gráfica. | ||
+ | Existe un error en el minuto 5:05 cuando se expresa los valores donde se alcanzan valores positivos, ya que el valor máximo que puede tomar la x es 6 y no infinito | ||
+ | }} | ||
{{p}} | {{p}} | ||
Revisión de 17:18 3 jun 2017
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadora |
Tabla de contenidos |
(Pág. 146)
Concepto de función
- Una función es una relación entre dos variables (por ejemplo, e ) que a cada valor de le asigna un único valor de .
- La variable se llama variable independiente y la variable se llama variable dependiente, porque su valor depende de .
- Se dice que es función de y lo representamos por . También se dice que es la imagen de mediante la función .
"Un grifo vierte agua en un depósito de 200 litros de capacidad, a razón de 2 litros por segundo, hasta que se llena el depósito, momento en el cual se cierra el grifo."
La relación entre el tiempo (t) que el grifo está abierto y el volumen (V) de agua que hay en el depósito es una función.
El volumen es función del tiempo:
- La variable independiente (t) es el "tiempo que está abierto el grifo".
- La variable dependiente (V) es el "volumen de agua que se ha llenado el depósito".
En los siguientes videos se explican los conceptos básicos sobre funciones que trataremos a lo largo de este tema.
Tutorial en el que se explican los conceptos básicos sobre funciones: variable independiente, dependiente, imagen, preimagen, dominio, recorrido... necesarios para poder comprender la terminología que se emplea en el análisis matemático.
- Definición de función.
- Dominio e imagen (o rango).
- Distintas formas de representar una función.
- Ejercicios resueltos.
Representación gráfica de una función
La representación gráfica de una función nos permite visualizar el comportamiento de las dos variables.
Procedimiento
- Usaremos un sistema de ejes cartesianos con una escala adecuada.
- Sobre el eje horizontal (eje de abscisas) representamos la variable independiente .
- Sobre el eje vertical (eje de ordenadas) la variable dependiente .
- Cada punto de la gráfica es generado por una pareja de valores e , que son sus coordenadas , su abscisa y su ordenada.
Consideremos el ejemplo anterior del grifo y el depósito:
- "Un grifo vierte agua en un depósito de 200 litros de capacidad, a razón de 2 litros por segundo, hasta que se llena el depósito, momento en el cual se cierra el grifo."
Función:
El volumen del depósito es función del tiempo:
- t = "Tiempo que está abierto el grifo" (en segundos).
- V = "Volumen de agua que se ha llenado el depósito" (en litros).
Tabla de valores:
Para obtener la representación gráfica es necesario obtener puntos de la misma. Para ello construiremos la llamada tabla de valores, que consiste en averiguar parejas de valores (t,V) que estén relacionadas mediante la función:
tiempo (s) |
0 | 1 | 5 | 20 | 40 | 60 | 100 |
Volumen (l) |
0 | 2 | 10 | 40 | 80 | 120 | 200 |
Gráfica:
- Representaremos los valores de la tabla en unos ejes de coordenadas. Cada punto de la gráfica consta de dos coordenadas: la primera es el valor de t y la segunda, el valor de V.
Actividad en la que aprenderás a representar gráficamente una función a partir de su tabla de valores. Las funciones son las que sirvieron de ejemplo en la actividad del apartado anterior.
En esta escena podrás ver como se representan los puntos de la gráfica de una función en unos ejes de coordenadas cartesianos.
La primera parte del tutorial recuerda los conceptos básicos sobre funciones: variable independiente, dependiente, imagen, preimagen, dominio, recorrido... En la segunda parte se muestran ejemplos de funciones dadas mediante gráficas.
Ejemplo de cómo se pueden usar las gráficas de forma engañosa en publicidad.
Las gráficas de contenido matemático se han convertido en el lenguaje más universal de finales del siglo XX. En cualquier medio de comunicación cada vez que se quiere dar información cuantitativa de un proceso aparece una gráfica matemática. Sus ventajas son incuestionables, son capaces de ofrecer gran cantidad de información de un simple vistazo. Constituyen un instrumento imprescindible en campos tan dispares como la medicina, la economía, la física, la biología y hasta en el deporte. En este programa investigaremos su origen relativamente reciente, tienen poco más de 200 años de existencia, y sus distintas aplicaciones y daremos algunos consejos para interpretar de forma crítica la información presentada en forma de gráficas.
Halla f(6) a partir de la gráfica de f(x).
Halla 2·f(8) + 8·g(8) a partir de las gráficas de f(x) y g(x).
Función que relaciona el tiempo que lleva abierto un grifo y la altura que alcanza el nivel del agua en un depósito cilíndrico.
La siguiente escena representa una botella (en color rojo) que cuando abras el grifo se comenzará a llenar de agua. El proceso de llenado de la botella se puede describir matemáticamente con lo que llamamos función, así para un tiempo concreto la función nos dice la altura de la botella en ese momento. El dibujo que queda tras el punto A se llama gráfica de la función.
Haz clic en el botón y dejándolo pulsado observa cómo se llena la botella .
Observa que en el eje horizontal representamos el tiempo que dejamos el grifo abierto y en el vertical la altura que el agua alcanza en la botella. En el eje horizontal hemos empezado a marcar 1 segundo, 2 segundos, etc.
Observa en este ejemplo, que la altura es cero cuando el tiempo transcurrido es cero y que la gráfica va creciendo.
- a) Observa las alturas que se alcanzan cuando han transcurrido 2, 4 y 6 segundos. Anótalas.
Si haces clic sobre un punto con el cursor te aparecerán los valores horizontal (tiempo) y vertical (altura) para ese punto.
- b) ¿Qué puedes decir de la relación entre las variables tiempo y altura?
- c) ¿Cuánto tiempo necesita la botella para llenarse hasta la mitad?
- d) ¿Cuánto tiempo necesita la botella para llenarse un cuarto? ¿Y tres cuartos?
Función que relaciona el tiempo que lleva abierto un grifo y la altura que alcanza el nivel del agua en un depósito de forma cónica.
En la siguiente escena la forma de la botella ha cambiado.
- a) Intenta hacer la gráfica antes de ver como queda en la escena.
- b) Observa las alturas que se alcanzan cuando han transcurrido 2, 4 y 6 segundos. Anótalas.
- c) ¿Qué puedes decir de la relación entre las alturas y los tiempos?
- d) Ahora la altura del agua según pasa el tiempo sube más despacio, ¿por qué?
Ahora prueba a cambiar la forma de la botella moviendo el punto P.
- e) Haz una botella con la boca más estrecha que la base y observa las distintas gráficas que se generan. Da una explicación de lo qué ocurre.
- f) Las gráficas unas veces son convexas (tipo U) y otras cóncavas (tipo U invertida), ¿de qué depende?
Evalúa funciones a partir de su gráfica.
Evalúa expresiones con funciones.
Las gráficas de contenido matemático se han convertido en el lenguaje más universal de finales del siglo XX. En cualquier medio de comunicación cada vez que se quiere dar información cuantitativa de un proceso aparece una gráfica matemática. Sus ventajas son incuestionables, son capaces de ofrecer gran cantidad de información de un simple vistazo. Constituyen un instrumento imprescindible en campos tan dispares como la medicina, la economía, la física, la biología y hasta en el deporte. En este programa investigaremos su origen relativamente reciente, tienen poco más de 200 años de existencia, y sus distintas aplicaciones y daremos algunos consejos para interpretar de forma crítica la información presentada en forma de gráficas.
Dominio e imagen de una función
- El conjunto de valores de la variable independiente, , para los que hay un valor de la variable dependiente, , se llama dominio de definición de la función. Se denota .
- El conjunto de valores que toma la variable independiente, , se llama imagen, recorrido o rango de la función. Se denota .
- Si un punto (x,y) pertenece a la gráfica de la función entonces se dice que y es la imagen de x y también que x es la antiimagen de y.
"Un grifo vierte agua en un depósito de 200 litros de capacidad, a razón de 2 litros por segundo, hasta que se llena el depósito, momento en el cual se cierra el grifo."
- t = "Tiempo que está abierto el grifo".
- V = "Volumen de agua que se ha llenado el depósito".
- Dominio: El tiempo que el grifo puede estar abierto es un número que varía entre 0 segundos y 100 segundos:
- Recorrido: El volumen de agua que se ha llenado el depósito es un número que varía ente 0 litros y 200 litros:
Puntos de corte con los ejes y signo e una función
Tutorial en el que se explica el cálculo de los puntos de corte con los ejes de una función dada su gráfica.
Tutorial en el que se explica el estudio del signo de una función dada su gráfica.
Existe un error en el minuto 5:05 cuando se expresa los valores donde se alcanzan valores positivos, ya que el valor máximo que puede tomar la x es 6 y no infinito
Ejercicios
Ejercicios resueltos: Interpretación de gráficas La siguiente gráfica describe el vuelo de un águila desde que sale del nido hasta que vuelve a él con una presa que caza durante el trayecto.
Solución:
|
Función que relaciona el tiempo que lleva abierto un grifo y la altura que alcanza el nivel del agua en un depósito cilíndrico.
La siguiente escena representa una botella (en color rojo) que cuando abras el grifo se comenzará a llenar de agua. El proceso de llenado de la botella se puede describir matemáticamente con lo que llamamos función, así para un tiempo concreto la función nos dice la altura de la botella en ese momento. El dibujo que queda tras el punto A se llama gráfica de la función.
Haz clic en el botón y dejándolo pulsado observa cómo se llena la botella .
Observa que en el eje horizontal representamos el tiempo que dejamos el grifo abierto y en el vertical la altura que el agua alcanza en la botella. En el eje horizontal hemos empezado a marcar 1 segundo, 2 segundos, etc.
Observa en este ejemplo, que la altura es cero cuando el tiempo transcurrido es cero y que la gráfica va creciendo.
- a) Observa las alturas que se alcanzan cuando han transcurrido 2, 4 y 6 segundos. Anótalas.
Si haces clic sobre un punto con el cursor te aparecerán los valores horizontal (tiempo) y vertical (altura) para ese punto.
- b) ¿Qué puedes decir de la relación entre las variables tiempo y altura?
- c) ¿Cuánto tiempo necesita la botella para llenarse hasta la mitad?
- d) ¿Cuánto tiempo necesita la botella para llenarse un cuarto? ¿Y tres cuartos?
Función que relaciona el tiempo que lleva abierto un grifo y la altura que alcanza el nivel del agua en un depósito de forma cónica.
En la siguiente escena la forma de la botella ha cambiado.
- a) Intenta hacer la gráfica antes de ver como queda en la escena.
- b) Observa las alturas que se alcanzan cuando han transcurrido 2, 4 y 6 segundos. Anótalas.
- c) ¿Qué puedes decir de la relación entre las alturas y los tiempos?
- d) Ahora la altura del agua según pasa el tiempo sube más despacio, ¿por qué?
Ahora prueba a cambiar la forma de la botella moviendo el punto P.
- e) Haz una botella con la boca más estrecha que la base y observa las distintas gráficas que se generan. Da una explicación de lo qué ocurre.
- f) Las gráficas unas veces son convexas (tipo U) y otras cóncavas (tipo U invertida), ¿de qué depende?
Evalúa funciones a partir de su gráfica.
Evalúa expresiones con funciones.
Ejercicio resuelto: Dominio e imagen |
Tutorial en el que se explica el cálculo del dominio y la imagen de una función a partir de su gráfica.
Halla el dominio de una función a partir de su gráfica:
Estudio del dominio de una función a partir de su gráfica.
Estudio del dominio de una función a partir de su gráfica.
Estudio del dominio de una función a partir de su gráfica.
Estudio del dominio de una función a partir de su gráfica.
Estudio del dominio de una función a partir de su gráfica.
Halla la imagen de una función a partir de su gráfica:
Estudio del recorrido o imagen de una función a partir de su gráfica.
Estudio del recorrido o imagen de una función a partir de su gráfica.
Estudio del recorrido o imagen de una función a partir de su gráfica.
Estudio del recorrido o imagen de una función a partir de su gráfica.
Halla el dominio de una función a partir de un enunciado:
Pati tiene una hermosa planta. La planta empezó a retoñar 2 días antes de que Pati la comprara, y la tuvo por 98 días antes de que muriera. La altura máxima que alcanzó a planta fue de 30 cm. Si denotamos por h(t) la altura de la planta en cm tras transcurrir t días desde el día de la compra, indica qué conjunto numérico es el más adecuado para el dominio de la función: ¿los números enteros o los números reales?. Halla el dominio.
Thomas tiene 400 barras de caramelo en su tienda, y cada una cuesta $0.50. Sea p(b) el precio, medido en pesos ($), de la compra de b barras de caramelo. Indica qué conjunto numérico es el más adecuado para el dominio de la función: ¿los números enteros o los números reales?. Halla el dominio.
Mason está parado en el 5º escalón de una escalera vertical. La escalera tiene 15 escalones y la diferencia de altura entre escalones consecutivos es de 0.5 m. Él está pensando si sube, baja o se queda quieto. Sea h(n) la altura por encima del nivel del suelo de los pies de Mason (medido en metros) después de moverse n escalones (si Mason bajara n escalones , n es negativa). Indica qué conjunto numérico es el más adecuado para el dominio de la función: ¿los números enteros o los números reales?. Halla el dominio.
Imagen y antiimagen:
Cálculo de la imagen y de la antiimagen a partir de la gráfica de una función.
Cálculo de la imagen y de la antiimagen a partir de la gráfica de una función.
Cálculo de la imagen y de la antiimagen a partir de la gráfica de una función.
Cálculo de la imagen y de la antiimagen a partir de la gráfica de una función.
Dada la gráfica de la función g(x), halla la antiimagen de -2, es decir, el valor de x para el cual g(x) = -2.
Dada la gráfica de la función f(x), halla el valor de x, además de -5, para el cual f(x) = f(-5).
Dada la función f(t) = -2t + 5, halla la antiimagen de 13, es decir, el valor de t para el cual f(t) = 13.
Actividades en las que aprenderás de forma visual los conceptos de dominio y recorrido de una función.
Observa la escena y mueve el punto P para ver los valores que recorren las variables:
Suponiendo que la gráfica se comporta de forma análoga a lo largo de todo el eje X, ¿Cuál es su dominio y su imagen?
Observa la escena y mueve el punto P para ver los valores que recorren las variables:
¿Cuál es su dominio y su imagen?
Observa la escena y mueve el punto P para ver los valores que recorren las variables:
¿Cuál es su dominio y su imagen?
En esta escena podrás visualizar el dominio y la imagen de una función. Podrás elegir entre un tramo de recta (función lineal) o de parábola (función cuadrática).
Dominio y rango a partir de gráficas.
Dominio de una función dada por un enunciado.
Imagen y antiimagen:
Actividades con las que aprenderás los conceptos de imagen y antiimagen.
Halla la antiimagen utilizando la gráfica de la función.
Halla la antiimagen utilizando la expresión analítica de la función.
Ejercicios propuestos
Ejercicios propuestos: Las funciones y sus gráficas |