Factoriales y números combinatorios (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:12 23 sep 2017
Coordinador (Discusión | contribuciones)
(Factoriales)
← Ir a diferencia anterior
Revisión de 17:13 23 sep 2017
Coordinador (Discusión | contribuciones)
(Apéndice)
Ir a siguiente diferencia →
Línea 262: Línea 262:
}} }}
==Apéndice== ==Apéndice==
 +===Permutaciones con repetición===
 +{{Videotutoriales|titulo=Ejercicios: ''Permutaciones con repetición''|enunciado=
 +{{Video_enlace_childtopia
 +|titulo1=Ejercicio 1
 +|duracion=1'28"
 +|sinopsis=Calcula las permutaciones de 12 elementos con repetición de 7,3 y 2: <math>PR^{7,3,2}_{12}\;</math>
 +|url1=https://www.youtube.com/watch?v=CH9w3rClogU&index=1&list=PLC413A2269A25E59F
 +}}
 +{{Video_enlace_childtopia
 +|titulo1=Ejercicio 2
 +|duracion=2'02"
 +|sinopsis=Calcula las permutaciones de 7 elementos con repetición de 3,2 y 2: <math>PR^{3,2,2}_{7}\;</math>
 +|url1=https://www.youtube.com/watch?v=ib5rbI1DhSQ&list=PLC413A2269A25E59F&index=2
 +}}
 +----
 +{{Video_enlace_childtopia
 +|titulo1=Problema 1
 +|duracion=1'40"
 +|sinopsis=Una pareja ha tenido 3 niñas y 1 niño. ¿En cuántos órdenes diferentes los ha podido tener?
 +|url1=https://www.youtube.com/watch?v=lj1tVKQYBGU&index=2&list=PL11093011D1BF0C20
 +}}
 +{{Video_enlace_childtopia
 +|titulo1=Problema 2
 +|duracion=2'13"
 +|sinopsis=¿Cuántas palabras distintas, tengan o no sentido, podemos forma con las letras de la palabra ORDENADOR?
 +|url1=https://www.youtube.com/watch?v=Uc7g6YhWAB4&list=PL11093011D1BF0C20&index=3
 +}}
 +{{Video_enlace_childtopia
 +|titulo1=Problema 3
 +|duracion=1'40"
 +|sinopsis=¿De cuántas maneras distintas podemos ordenar 3 bolas verdes, 2 rojas y 1 azul?
 +|url1=https://www.youtube.com/watch?v=K3idWlPI3Dw&list=PL11093011D1BF0C20&index=4
 +}}
 +}}
 +{{p}}
===Variaciones con repetición=== ===Variaciones con repetición===
{{Caja_Amarilla|texto=Se llama '''variaciones con repetición''' de n elementos tomados de k en k (n ≥ k), y se representa <math>VR_n^k\;</math>, o bien <math>VR_{n,k}\;</math>, al número de grupos distintos de n elementos que se pueden formar a partir de m elementos dados, de forma que importa el orden y se pueden repetir los elementos. {{Caja_Amarilla|texto=Se llama '''variaciones con repetición''' de n elementos tomados de k en k (n ≥ k), y se representa <math>VR_n^k\;</math>, o bien <math>VR_{n,k}\;</math>, al número de grupos distintos de n elementos que se pueden formar a partir de m elementos dados, de forma que importa el orden y se pueden repetir los elementos.

Revisión de 17:13 23 sep 2017

Tabla de contenidos

(Pág. 43)

Factoriales

Se define el factorial de un número entero positivo "n" como

n! = \prod_{k=1}^n k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot ... \cdot n

y se define, por convenio:

0! = 1 \;.

La operación de factorial aparece en muchas áreas de las matemáticas, particularmente en combinatoria y análisis matemático. De manera fundamental el factorial de n representa el número de formas distintas de ordenar n objetos distintos (permutaciones sin repetición). Este hecho ya era conocido en el siglo XII por los hindúes.

La notación matemática actual, n!\;, fue usada por primera vez en 1808 por Christian Kramp (1760–1826), un matemático francés que trabajó, en especial, sobre los factoriales durante toda su vida.

(Pág. 43)

Números combinatorios

Coeficiente binomial

Se llama coeficiente binomial, y lo representaremos por {n\choose k}, o   C^k_n \,, o bien   C_{n,k} \,, al número de subconjuntos de k\; elementos escogidos de un conjunto con n\; elementos. También se suele decir que es el "número de combinaciones de n\; elementos tomados de k\; en k\;" y, por tanto, que se le conozca también como "número combinatorio".

ejercicio

Proposición


El coeficiente binomial viene dado por la fórmula:

{n\choose k} = \frac{n!}{k! (n-k)!}

Propiedades de los números combinatorios

ejercicio

Propiedades


  1. {n\choose 0} = {n\choose n} = 1
  2. {n\choose k} = {n\choose n-k}
  3. {n-1\choose k-1} + {n-1\choose k} = {n\choose k}

Apéndice

Permutaciones con repetición

Variaciones con repetición

Se llama variaciones con repetición de n elementos tomados de k en k (n ≥ k), y se representa VR_n^k\;, o bien VR_{n,k}\;, al número de grupos distintos de n elementos que se pueden formar a partir de m elementos dados, de forma que importa el orden y se pueden repetir los elementos.

ejercicio

Proposición


Las variaciones con repetición de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:

VR_{n,k}=n^k\;

Variaciones ordinarias

Se llama variaciones ordinarias (o sin repetición) de n elementos tomados de k en k (n ≥ k), y se representa V_n^k\;, o bien V_{n,k}\;, al número de grupos distintos de n elementos que se pueden formar a partir de m elementos dados, de forma que importa el orden y no se pueden repetir los elementos.

ejercicio

Proposición


Las variaciones ordinarias de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:

V_{n,k}=\cfrac{n!}{(n-k)!}=n(n-1)(n-2)(n-3) \cdots (n-k+1)

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda