Combinatoria

De Wikipedia

(Diferencia entre revisiones)
Revisión de 11:47 24 sep 2017
Coordinador (Discusión | contribuciones)
(Permutaciones)
← Ir a diferencia anterior
Revisión de 11:48 24 sep 2017
Coordinador (Discusión | contribuciones)
(Combinaciones)
Ir a siguiente diferencia →
Línea 117: Línea 117:
=Combinaciones= =Combinaciones=
 +{{Video_enlace_matematicasfaciles
 +|titulo1=Combinaciones
 +|duracion=15'54"
 +|sinopsis=Tutorial sobre combinaciones con o sin repetición. Ejemplos
 +|url1=https://www.youtube.com/watch?v=Oqfr9Yw1zHM
 +}}
==Combinaciones ordinarias== ==Combinaciones ordinarias==
{{Caja Amarilla|texto=Se llaman '''combinaciones ordinarias''' (o sin repetición) de n elementos tomados de k en k (n ≥ k), y lo representaremos por <math> C^k_n \,</math> o <math> C_{n,k} \,</math>, a los distintos subconjuntos de k elementos que pueden formarse con los n elementos dados. Nótese que al tratarse de subconjuntos no importa el orden y no pueden repetirse los elementos.}} {{Caja Amarilla|texto=Se llaman '''combinaciones ordinarias''' (o sin repetición) de n elementos tomados de k en k (n ≥ k), y lo representaremos por <math> C^k_n \,</math> o <math> C_{n,k} \,</math>, a los distintos subconjuntos de k elementos que pueden formarse con los n elementos dados. Nótese que al tratarse de subconjuntos no importa el orden y no pueden repetirse los elementos.}}
Línea 189: Línea 195:
}} }}
}} }}
 +
=Variaciones= =Variaciones=
==Variaciones con repetición== ==Variaciones con repetición==

Revisión de 11:48 24 sep 2017

Tabla de contenidos

Permutaciones

Permutaciones ordinarias

Se llama permutaciones ordinarias (o sin repetición) de n elementos, y se representa P_n\;, a las distintas agrupaciones de n elementos ordenadas obtenidas a partir de esos n elementos.

ejercicio

Proposición


El número de permutaciones de n elementos se pueden calcular con la siguiente fórmula:

P_n=n!\;

Permutaciones con repetición

Se llama permutaciones con repetición de n elementos, donde el primer elemento se repite "a" veces , el segundo "b" veces , el tercero "c" veces, ..., con n=a+b+c+..., y se representa PR_n^{a,b,c,...}\;, a las distintas agrupaciones ordenadas de n elementos formadas con esos n elementos, teniendo en cuenta que los elementos repetidos son indistinguibles.

ejercicio

Proposición


El número de permutaciones con repetición de n elementos, donde el primer elemento se repite "a" veces , el segundo "b" veces , el tercero "c" veces, ..., con n=a+b+c+..., se pueden calcular con la siguiente fórmula:

PR_n^{a,b,c,...}=\cfrac{n!}{a!b!c!...}\;

Combinaciones

Combinaciones ordinarias

Se llaman combinaciones ordinarias (o sin repetición) de n elementos tomados de k en k (n ≥ k), y lo representaremos por C^k_n \, o C_{n,k} \,, a los distintos subconjuntos de k elementos que pueden formarse con los n elementos dados. Nótese que al tratarse de subconjuntos no importa el orden y no pueden repetirse los elementos.

ejercicio

Proposición


El número de combinaciones de n elementos tomados de k en k (n ≥ k) puede calcularse con la siguiente fórmula:

C^k_n = {n\choose k} = \frac{n!}{k! (n-k)!}

Ver: Números combinatorios

Combinaciones con repetición

Se llaman combinaciones con repetición de n elementos tomados de k en k, y lo representaremos por CR^k_n \, o CR_{n,k} \,, a las distintas agrupaciones de k elementos que pueden formarse con los n elementos dados, de manera que pueden repetirse los elementos y no importa el orden de los mismos.


Nota: n no tiene por qué ser mayor o igual que k.

ejercicio

Proposición


El número de combinaciones con repetición de n elementos tomados de k en k (n ≥ k) puede calcularse con la siguiente fórmula:

CR^k_n = {n+k-1\choose k} = \frac{(n+k-1)!}{k! (n-1)!}

Variaciones

Variaciones con repetición

Se llama variaciones con repetición de n elementos tomados de k en k (n ≥ k), y se representa VR_n^k\;, o bien VR_{n,k}\;, a las distintas agrupaciones ordenadas de n elementos que se pueden formar a partir de m elementos dados en las que se pueden repetir los elementos.

ejercicio

Proposición


El número de variaciones con repetición de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:

VR_{n,k}=n^k\;

Variaciones ordinarias

Se llama variaciones ordinarias (o sin repetición) de n elementos tomados de k en k (n ≥ k), y se representa V_n^k\;, o bien V_{n,k}\;, a las distintas agrupaciones ordenadas de n elementos que se pueden formar a partir de m elementos dados en las que no se pueden repetir los elementos.

ejercicio

Proposición


El número de variaciones ordinarias de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:

V_{n,k}=\cfrac{n!}{(n-k)!}=n(n-1)(n-2)(n-3) \cdots (n-k+1)

Ejercicios y Problemas



Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda