Distribuciones discretas: La distribución binomial

De Wikipedia

(Diferencia entre revisiones)
Revisión de 15:26 1 jul 2007
Juanmf (Discusión | contribuciones)
(Distribución binomial)
← Ir a diferencia anterior
Revisión actual
Juanmf (Discusión | contribuciones)
(Distribución binomial)
Línea 221: Línea 221:
==Distribución binomial== ==Distribución binomial==
{{Caja_Amarilla|texto= {{Caja_Amarilla|texto=
-Supongamos que un experimento aleatorio tiene las siguientes caracteristicas:+ 
-<br/>+Supongamos que un experimento aleatorio tiene las siguientes caracteristicas:{{Caja|contenido=
-:1. En cada prueba del experimento sólo son posibles dos resultados: <math>A</math>, llamado éxito, y su contrario <math> \bar{A} </math>, llamado fracaso.+<br>
 +:1. En cada prueba del experimento sólo son posibles dos resultados: <math>A</math>, llamado '''éxito''', y su contrario <math> \bar{A} </math>, llamado '''fracaso'''.
:2. El resultado de cada prueba es independiente de los resultados obtenidos anteriormente. :2. El resultado de cada prueba es independiente de los resultados obtenidos anteriormente.
Línea 231: Línea 232:
:4. En cada experimento se realizan &nbsp; <math> n </math> &nbsp; pruebas idénticas. :4. En cada experimento se realizan &nbsp; <math> n </math> &nbsp; pruebas idénticas.
- +}}
<br/> <br/>
Línea 243: Línea 244:
</math> </math>
, que representa el '''número de éxitos''' obtenidos en el experimento, se le , que representa el '''número de éxitos''' obtenidos en el experimento, se le
-llama variable aleatoria binomial.+llama variable aleatoria binomial <math> B(n,p)</math>.
 + 
 +Su función de probabilidad es:
 +{{Caja|contenido=
 +<center>
 +<math>
 +\mathrm{P}
 +\left(
 + \, X \, = \, r \,
 +\right)
 +\, = \,
 +\left(
 + \, { n \atop r }
 +\right)
 +\cdot p^r \cdot
 +\left(
 + \, 1 \, - \, p \,
 +\right)
 +^
 +\left(
 + \, n \, - \, r \,
 +\right)
 +</math>
 +}}
 +<br/>
 +Además
 +{{Caja|contenido=
 +&nbsp; <math> E(X)=n.p \qquad \sigma= \sqrt{n.p.(1-p)}</math>
 +}}
<br/> <br/>
-Función de probabilidad.+'''Obtención de la función de probabilidad.'''
Existen varias maneras de obtener &nbsp; Existen varias maneras de obtener &nbsp;
Línea 279: Línea 308:
</math> </math>
</center> </center>
- 
<br/> <br/>
Línea 285: Línea 313:
ocurre el fracaso. En el primer caso, el fracaso ocurre en la primera prueba; en el ocurre el fracaso. En el primer caso, el fracaso ocurre en la primera prueba; en el
segundo caso ocurre en la segunda y en el tercer caso ocurre en la tercera. segundo caso ocurre en la segunda y en el tercer caso ocurre en la tercera.
- 
<br/> <br/>
Línea 291: Línea 318:
<br/> <br/>
- 
<center> <center>
<math> <math>
Línea 314: Línea 340:
<br/> <br/>
- 
Por otra parte, &nbsp; Por otra parte, &nbsp;
<math> <math>
Línea 337: Línea 362:
<br/> <br/>
- 
<center> <center>
<math> <math>
Línea 351: Línea 375:
<br/> <br/>
- 
donde la primera igualdad es cierta porque los resultados de las tres pruebas son donde la primera igualdad es cierta porque los resultados de las tres pruebas son
independientes. independientes.
<br/> <br/>
- 
Así Así
- 
<br/> <br/>
Línea 376: Línea 397:
<br/> <br/>
En general: En general:
- 
<br/> <br/>
- +{{Caja|contenido=
<center> <center>
<math> <math>
Línea 398: Línea 418:
\right) \right)
</math> </math>
 +}}
</center> </center>
- 
<br/> <br/>
- 
donde donde
- 
<br/> <br/>
- 
<center> <center>
<math> <math>
Línea 414: Línea 431:
</math> </math>
</center> </center>
- 
<br/> <br/>
- 
es el número de sucesos elementales que componen el suceso &nbsp; es el número de sucesos elementales que componen el suceso &nbsp;
<math> <math>
Línea 423: Línea 438:
\right\} \right\}
</math> </math>
-&nbsp; ( estos sucesos elementales tienen en comun un mismo número de exitos y de+&nbsp; ( estos sucesos elementales tienen en común un mismo número de éxitos y de
-fracasos y solo se diferencian en el orden en que ocurren los exitos y los fracasos ).+fracasos y solo se diferencian en el orden en que ocurren los éxitos y los fracasos ).
- +
<br/> <br/>
Línea 439: Línea 453:
</math> </math>
&nbsp; es la probabilidad de cada uno de estos sucesos elementales. &nbsp; es la probabilidad de cada uno de estos sucesos elementales.
- 
-<br/> 
- 
-Al ser la variable aleatoria binomial una variable aleatoria discreta, tiene asociadas 
-una función de probabilidad y una función de distribución. 
- 
<br/> <br/>
Línea 459: Línea 467:
n! \, = \, n \cdot \left( \,n \, - \, 1 \, \right) \cdot \ldots 2 \cdot 1 n! \, = \, n \cdot \left( \,n \, - \, 1 \, \right) \cdot \ldots 2 \cdot 1
</math> </math>
- 
<br/> <br/>
- +}}
-===Ejemplo===+<br>
- +{{Ejemplo|titulo=Ejemplo: ''Distribución binomial''
-<br/>+|enunciado=
- +
¿Cual es la probabilidad de que en una familia con 5 hijos, 3 sean chicos y 2 chicas? ¿Cual es la probabilidad de que en una familia con 5 hijos, 3 sean chicos y 2 chicas?
- +|sol=
-<br/>+
- +
En este caso el experimento aleatorio consiste de &nbsp; En este caso el experimento aleatorio consiste de &nbsp;
<math> <math>
n \, = \, 5 n \, = \, 5
</math> </math>
-&nbsp; "pruebas". Cada una de estas pruebas+&nbsp; "pruebas". Cada una de estas pruebas es el nacimiento de un hijo. Supongamos que la probabilidad de que un hijo sea chico es
-es el nacimiento de un hijo. Supongamos que la probabilidad de que un hijo sea chico es+
de &nbsp; de &nbsp;
<math> <math>
Línea 487: Línea 490:
<br/> <br/>
- 
<center> <center>
<math> <math>
Línea 511: Línea 513:
</math> </math>
</center> </center>
 +
}} }}
<br/> <br/>

Revisión actual

Función de probabilidad

Denotaremos como   \mathrm{P} \left(    \, X \, = \, x_i \, \right)   a la probabilidad de que la variable aleatoria tome el valor   xi .

Se llama función de probabilidad de una variable aleatoria discreta   X   a la aplicacion que a cada valor de   xi   de la variable le hace corresponder la probabilidad de que la variable tome dicho valor:


\mathrm{f} \left(    \, x_i \,  \right)  \, = \,  \mathrm{P}  \left(     \, X \, = \, x_i \,  \right)

Por definición, deducimos que si   \left\{   \, x_1, \, x_2, \ldots, \, x_n \,  \right\}   son los valores que puede tomar la variable   X , entonces:

\sum_{i \, = \, 1}^n \mathrm{f} \left( \, x_i  \, \right) \, = \, \mathrm{f} \left( \,   x_1 \, \right) \, + \, \mathrm{f} \left( \, x_2 \, \right) \, + \, \ldots \, + \, \mathrm{f} \left( \, x_n \, \right) \, = \, 1


ya que esta suma es, en realidad, la probabilidad del suceso seguro.


ejercicio

Ejemplo:Función de probabilidad


En el experimento de lanzar tres monedas al aire, la aplicación   X   que asigna a cada resultado el numero de cruces obtenidas es una variable aleatoria. Halla su función de probabilidad.


Función de distribución

Dada una variable aleatoria discreta   X , su función de distribución es la aplicación que a cada valor de   xi   de la variable le asigna la probabilidad de que ésta tome valores menores o iguales que   xi , y la denotamos por:


\mathrm{F} \left( \, x_i  \, \right) \, = \, \mathrm{P} \left(    \, X \le x_i \, \right)


La función de distribución de cualquier variable aleatoria discreta tiene las siguientes caracteristicas:

1. Al ser una probabilidad,   0 \le \mathrm{F} \left( \, x_i  \, \right) \le 1 .

2.   \mathrm{F} \left( \, x  \, \right)   es nula para todo valor de   x   menor que el menor valor de la variable aleatoria, y es igual a uno para todo valor de   x   mayor que el mayor valor de la variable.
3.   \mathrm{F} \left( \, x  \, \right)   es creciente.

4.   \mathrm{F} \left( \, x  \, \right)   es constante en cada intervalo   \left(    \, x_i, \, x_{i \, + \, 1} \, \right) , además es continua a la derecha de   xi   y a la izquierda   x_{i \, + \, 1} , y discontinua a la izquierda de   xi   y a la derecha de   xi + 1 , para   i \, = \, 1, \, \ldots, \, n \, - \, 1

5. Sea   xi < xj , entonces   \mathrm{P}  \left(     \, x_i < X \le x_j \,  \right)  \, = \, \mathrm{F} \left(    \, x_j \,  \right)  \, - \,  \mathrm{F} \left(    \, x_i \,  \right)


Distribución binomial

Supongamos que un experimento aleatorio tiene las siguientes caracteristicas:


1. En cada prueba del experimento sólo son posibles dos resultados: A, llamado éxito, y su contrario \bar{A}, llamado fracaso.
2. El resultado de cada prueba es independiente de los resultados obtenidos anteriormente.
3. La probabilidad de   A , que denotamos por   p , no varía de una prueba a otra.
4. En cada experimento se realizan   n   pruebas idénticas.


Todo experimento aleatorio con estas características se dice que sigue el modelo de la distribución binomial. Su función de probabilidad queda determinada por n número de pruebas idénticas realizadas y p probabilidad de éxito en una de ellas.

A la variable   X , que representa el número de éxitos obtenidos en el experimento, se le llama variable aleatoria binomial B(n,p).

Su función de probabilidad es:

\mathrm{P} \left(   \, X \, = \, r \, \right) \, = \, \left(   \, { n \atop r } \right) \cdot p^r \cdot \left(   \, 1 \, - \, p \, \right) ^ \left(   \, n \, - \, r \, \right)


Además

  E(X)=n.p \qquad \sigma= \sqrt{n.p.(1-p)}


Obtención de la función de probabilidad.

Existen varias maneras de obtener   r   exitos en las   n   pruebas. Supongamos que lanzamos una moneda   n \, = \, 3   veces y calculemos la probabilidad del suceso "obtener 2 caras":   \left\{    \, X \, = \, 2 \, \right\} . ( Aqui el exito es que salga cara ). Existen tres posibilidades de que ocurra   \left\{   \, X \, = \, 2 \, \right\}:


<center> \bar{A}AA \quad A\bar{A}A \quad AA\bar{A}

La diferencia entre estas tres posibilidades ( sucesos elementales ) es la prueba en que ocurre el fracaso. En el primer caso, el fracaso ocurre en la primera prueba; en el segundo caso ocurre en la segunda y en el tercer caso ocurre en la tercera.

Como estos sucesos son incompatibles, se tiene que:


\mathrm{P} \left(   \, X \, = \, 2 \, \right) \, = \, \mathrm{P} \left(    \, \bar{A}AA \,  \right)  \, + \, \mathrm{P}  \left(     \, A\bar{A}A \,   \right)  \, + \, \mathrm{P}  \left(     \, AA\bar{A} \,  \right)


Por otra parte,   \mathrm{P} \left(   \, \bar{A}AA \, \right) \, = \, \mathrm{P} \left(   \, A\bar{A}A \, \right) \, = \, \mathrm{P} \left(   \, AA\bar{A} \, \right)  \, = \, p^2 \cdot \left(    \, 1 \, - \, p \, \right) . Por ejemplo:


\mathrm{P} \left(   \, AA\bar A \right) \, = \, \mathrm{P} \left( \, A  \, \right) \cdot \mathrm{P} \left( \, A  \, \right) \cdot \mathrm{P} \left( \, \bar A \, \right) \, = \, p \cdot p \cdot \left( \, 1 \, - \,   p  \, \right)


donde la primera igualdad es cierta porque los resultados de las tres pruebas son independientes.


Así

\mathrm{P} \left(   \, X \, = \, 2 \, \right) \, = \, 3 \cdot  p^2 \cdot \left(   \, 1 \, - \, p \, \right)


En general:

\mathrm{P} \left(   \, X \, = \, r \, \right) \, = \, \left(   \, { n \atop r } \right) \cdot p^r \cdot \left(   \, 1 \, - \, p \, \right) ^ \left(   \, n \, - \, r \, \right)


donde

\left(   { n \atop r } \right) \, = \, \frac{n!}{r!\left( \, n \, - \, r  \, \right)!}

es el número de sucesos elementales que componen el suceso   \left\{    \, X \, = \, r \, \right\}   ( estos sucesos elementales tienen en común un mismo número de éxitos y de fracasos y solo se diferencian en el orden en que ocurren los éxitos y los fracasos ).

p^r \cdot \left(   \, 1 \, - \, p \, \right) ^ \left(   \, n \, - \, r \, \right)   es la probabilidad de cada uno de estos sucesos elementales.

NOTA:   n!   es el factorial de   n ,   n! \, = \, n \cdot \left( \,n \, - \, 1  \, \right) \cdot \ldots 2 \cdot 1


ejercicio

Ejemplo: Distribución binomial


¿Cual es la probabilidad de que en una familia con 5 hijos, 3 sean chicos y 2 chicas?


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda