Plantilla:Números compuestos y números primos

De Wikipedia

(Diferencia entre revisiones)
Revisión de 06:43 12 sep 2016
Coordinador (Discusión | contribuciones)
(Cómo averiguar si un número es primo)
← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)
(Criba de Eratóstenes)
Línea 1: Línea 1:
{{def numeros primos y compuestos}} {{def numeros primos y compuestos}}
{{p}} {{p}}
-{{Video_enlace+===Criba de Eratóstenes===
-|titulo1=Números naturales. Números primos +{{tabla50|celda1=
-|duracion=17´+{{Caja_Amarilla|texto=
-|url1=http://www.rtve.es/alacarta/videos/mas-por-menos/aventura-del-saber-serie-mas-menos-numeros-naturales-numeros-primos/1296603/+La '''criba de Eratóstenes''' es un algoritmo que permite hallar todos los números primos menores que un número natural dado ''n'', que desarrolló el célebre matemático griego [http://es.wikipedia.org/wiki/Erat%C3%B3stenes Eratóstenes] en el siglo III a.C.
-|url3=http://maralboran.org/web_ma/videos/naturales/naturales.htm+
-|titulo2=Acceso por red TIC+
-|url2=http://c0/helvia/aula/archivos/repositorio//0/113/html/index.htm+
-|sinopsis=Los números que nos sirven para contar, los números naturales, uno de los más viejos inventos de la Humanidad. ¿Cómo serían nuestras vidas sin la existencia de estos números?... Desde los pitagóricos, que los consideraron como el principio y la explicación de todo el Universo, hasta nuestros días estos números han ejercido un poderoso influjo sobre los matemáticos de todas las épocas. Uno de los campos que ha tenido en jaque a los grandes matemáticos es el de los números primos; una auténtica caja de sorpresas. Aún hoy, utilizando potentes ordenadores, no se han podido demostrar algunas de las conjeturas formuladas sobre estos números hace más de doscientos años. Veremos algunas de ellas y descubriremos una de las aplicaciones más extrañas de los números primos en la actualidad, su utilización en criptografía. [[Más por menos: Números naturales. Números primos|(Ver resumen detallado)]]+
}} }}
{{p}} {{p}}
-===Criba de Eratóstenes===+{{Teorema_sin_demo|titulo=Procedimiento|enunciado=
-La [http://es.wikipedia.org/wiki/Criba_de_Erat%C3%B3stenes criba de Eratóstenes] es un algoritmo para hallar números primos que desarrolló el célebre matemático griego [http://es.wikipedia.org/wiki/Erat%C3%B3stenes Eratóstenes] en el siglo III a.C.+Se forma una tabla con todos los números naturales comprendidos entre 2 y ''n'', y se van tachando los números que no son primos de la siguiente manera:
-<br>+*Comenzando por el 2, se tachan todos sus múltiplos.
 +*Comenzando de nuevo, cuando se encuentra un número entero que no ha sido tachado, ese número es declarado primo, y se procede a tachar todos sus múltiplos, así sucesivamente.
 +*El proceso termina cuando el cuadrado del mayor número declarado como primo es mayor que ''n''. Tras haber tachado sus múltiplos, los número que quedan sin tachar son todos los primos entre 2 y ''n''.
 +}}
{{p}} {{p}}
-{{AI_enlace+|celda2=
-|titulo1=Criba de Eratóstenes+[[Imagen:criba_eratostenes.gif|thumb|450px|Animación de la criba de Eratóstenes para números primos menores que 120. Se incluye la optimización de comenzar por los cuadrados de números primos.]]
-|descripcion=La Criba de Eratóstenes es un procedimiento para obtener los primeros números primos. +}}
-* Se comienza con un panel en el que están colocados los números naturales a partir del número 2. Normalmente se hace con los cien primeros números naturales, aquí emplearemos solamente hasta el número 46.+{{p}}
-* Comenzamos por el número 2, lo dejamos, pero a partir de él contamos de 2 en 2 y eliminamos los números que sean múltiplos de 2.+Determinemos, mediante el siguiente ejemplo, el proceso para determinar la lista de los números primos menores de 20.
-* El primer número de los que quedan es el 3, lo dejamos y desde el número 3 eliminamos los números que sean múltiplos de 3. +
-* El siguiente número de los que quedan es el 5, lo dejamos y desde el número 5 eliminamos los números que sean múltiplos de 5. +
-* Así vamos avanzando, cuando llegamos a un número que no ha sido eliminado lo dejamos, pero a partir de él eliminamos los números que sean múltiplos de él. Así hasta el final.+
-* Finalmente habrán quedado solamente números primos.+
-<center><iframe>+#''Primer paso'': listar los números naturales comprendidos entre 2 y 20.
-url=http://maralboran.org/web_ma/descartes/1y2_eso/Multiplos_divisores/criba_1.html+<center>
-width=650+{| border="1" cellspacing="0" cellpadding="2"
-height=470+|-----
-name=myframe+| bgcolor="#d1c4ad" | 2 || bgcolor="#d1c4ad" | 3
-</iframe></center>+| bgcolor="#d1c4ad" | 4
-|url1=http://maralboran.org/web_ma/descartes/1y2_eso/Multiplos_divisores/criba_1.html+| bgcolor="#d1c4ad" | 5 || bgcolor="#d1c4ad" | 6
 +| bgcolor="#d1c4ad" | 7
 +| bgcolor="#d1c4ad" | 8 || bgcolor="#d1c4ad" | 9
 +| bgcolor="#d1c4ad" | 10
 +| bgcolor="#d1c4ad" | 11 || bgcolor="#d1c4ad" | 12
 +| bgcolor="#d1c4ad" | 13
 +| bgcolor="#d1c4ad" | 14 || bgcolor="#d1c4ad" | 15
 +| bgcolor="#d1c4ad" | 16
 +| bgcolor="#d1c4ad" | 17 || bgcolor="#d1c4ad" | 18
 +| bgcolor="#d1c4ad" | 19 || bgcolor="#d1c4ad" | 20
 +|}
 +</center>
 + 
 +:2. ''Segundo paso'': Se toma el primer número no rayado ni marcado, como número primo.
 +<center>
 +{| border="1" cellspacing="0" cellpadding="2"
 +|-----
 +| bgcolor="#ff0000" | 2 || bgcolor="#d1c4ad" | 3
 +| bgcolor="#d1c4ad" | 4
 +| bgcolor="#d1c4ad" | 5 || bgcolor="#d1c4ad" | 6
 +| bgcolor="#d1c4ad" | 7
 +| bgcolor="#d1c4ad" | 8 || bgcolor="#d1c4ad" | 9
 +| bgcolor="#d1c4ad" | 10
 +| bgcolor="#d1c4ad" | 11 || bgcolor="#d1c4ad" | 12
 +| bgcolor="#d1c4ad" | 13
 +| bgcolor="#d1c4ad" | 14 || bgcolor="#d1c4ad" | 15
 +| bgcolor="#d1c4ad" | 16
 +| bgcolor="#d1c4ad" | 17 || bgcolor="#d1c4ad" | 18
 +| bgcolor="#d1c4ad" | 19 || bgcolor="#d1c4ad" | 20
 +|}
 +</center>
 + 
 +:3. ''Tercer paso'': Se tachan todos los múltiplos del número que se acaba de indicar como primo.
 +<center>
 +{| border="1" cellspacing="0" cellpadding="2"
 +|-----
 +| bgcolor="#ff0000" | 2 || bgcolor="#d1c4ad" | 3
 +| <span style="color:#ff0000;text-decoration:line-through;"> 4 </span>
 +| bgcolor="#d1c4ad" | 5
 +| <span style="color:#ff0000;text-decoration:line-through;"> 6 </span>
 +| bgcolor="#d1c4ad" | 7
 +| <span style="color:#ff0000;text-decoration:line-through;"> 8 </span>
 +| bgcolor="#d1c4ad" | 9
 +| <span style="color:#ff0000;text-decoration:line-through;"> 10 </span>
 +| bgcolor="#d1c4ad" | 11
 +| <span style="color:#ff0000;text-decoration:line-through;"> 12 </span>
 +| bgcolor="#d1c4ad" | 13
 +| <span style="color:#ff0000;text-decoration:line-through;"> 14 </span>
 +| bgcolor="#d1c4ad" | 15
 +| <span style="color:#ff0000;text-decoration:line-through;"> 16 </span>
 +| bgcolor="#d1c4ad" | 17
 +| <span style="color:#ff0000;text-decoration:line-through;"> 18 </span>
 +| bgcolor="#d1c4ad" | 19
 +| <span style="color:#ff0000;text-decoration:line-through;"> 20 </span>
 +|}
 +</center>
 + 
 +:4. ''Cuarto paso'': Si el cuadrado del primer número que no ha sido rayado ni marcado es inferior a 20, entonces se repite el segundo paso. Si no, el algoritmo termina, y todos los enteros no tachados son declarados primos.
 + 
 +:Como 3² = 9 < 20, se vuelve al segundo paso:
 +<center>
 +{| border="1" cellspacing="0" cellpadding="2"
 +|-----
 +| bgcolor="#ff0000" | 2 || bgcolor="#0000ff" | 3
 +| <span style="color:#ff0000;text-decoration:line-through;"> 4 </span>
 +| bgcolor="#d1c4ad" | 5
 +| <span style="color:#ff0000;text-decoration:line-through;"> 6 </span>
 +| bgcolor="#d1c4ad" | 7
 +| <span style="color:#ff0000;text-decoration:line-through;"> 8 </span>
 +| <span style="color:#0000ff;text-decoration:line-through;"> 9 </span>
 +| <span style="color:#ff0000;text-decoration:line-through;"> 10 </span>
 +| bgcolor="#d1c4ad" | 11
 +| <span style="color:#ff0000;text-decoration:line-through;"> 12 </span>
 +| bgcolor="#d1c4ad" | 13
 +| <span style="color:#ff0000;text-decoration:line-through;"> 14 </span>
 +| <span style="color:#0000ff;text-decoration:line-through;"> 15 </span>
 +| <span style="color:#ff0000;text-decoration:line-through;"> 16 </span>
 +| bgcolor="#d1c4ad" | 17
 +| <span style="color:#ff0000;text-decoration:line-through;"> 18 </span>
 +| bgcolor="#d1c4ad" | 19
 +| <span style="color:#ff0000;text-decoration:line-through;"> 20 </span>
 +|}
 +</center>
 + 
 +:5. ''Quinto paso:'' En el cuarto paso, el primer número que no ha sido tachado ni marcado es 5. Se tachan sus múltiplos. Como su cuadrado es mayor que 20, el algoritmo termina y se consideran primos todos los números que no han sido tachados.
 + 
 +:Como resultado se obtienen los números primos comprendidos entre 2 y 20, y estos son: 2, 3, 5, 7, 11, 13, 17, 19.
 +{{p}}
 +{{Video_enlace
 +|titulo1=Criba de Eratóstenes
 +|duracion=7´38"
 +|url1=http://www.youtube.com/watch?v=bNMeeMsnvK8
 +|sinopsis=Determinación de los números primos utilizando la Criba de Eratóstenes.
}} }}
{{p}} {{p}}
 +{{Nota|titulo=Optimización del método:|texto= Al seguir este método de búsqueda de primos, cada vez que marcamos un número como primo, no es necesario empezar a buscar sus múltiplos desde el más pequeño, sino desde su cuadrado, pues todos los anteriores ya habrían sido eliminados por ser múltiplos de primos más pequeños.
 +}}
 +{{Actividades|titulo=Criba de Eratóstenes|enunciado=
 +{{Geogebra_enlace
 +|descripcion=En esta escena podrás practicar el procedimiento de la criba de Eratóstenes para obtener números primos.
 +|enlace=[http://ggbm.at/fbreeTrC Criba de Eratóstenes]
 +}}
 +{{AI_cidead
 +|titulo1=Criba de Eratóstenes
 +|descripcion=Actividad para practicar la criba de Eratóstenes.
 +|url1=http://recursostic.educacion.es/secundaria/edad/1esomatematicas/1quincena2/1quincena2_contenidos_2b.htm
 +}}
 +}}
===Cómo averiguar si un número es primo=== ===Cómo averiguar si un número es primo===
Línea 42: Línea 142:
|titulo=Ejemplo: ''Averiguar si un número es primo'' |titulo=Ejemplo: ''Averiguar si un número es primo''
|enunciado= |enunciado=
-:Averigua si el número 167 es primo.+Averigua si el número 167 es primo.
|sol= |sol=
Efectuamos las siguientes divisiones por los distintos números primos: 2, 3, 5, 7, 11, 13, 17,... hasta que sea divisible o el cociente sea menor o igual que el siguiente número primo por el que toca dividir:<br> Efectuamos las siguientes divisiones por los distintos números primos: 2, 3, 5, 7, 11, 13, 17,... hasta que sea divisible o el cociente sea menor o igual que el siguiente número primo por el que toca dividir:<br>
Línea 55: Línea 155:
}} }}
{{p}} {{p}}
- +{{Videotutoriales|titulo=Averiguar si un número es primo|enunciado=
-{{AI_enlace+{{Video_enlace_tutomate
-|titulo1=Descubre si un número es primo o compuesto+|titulo1=Ejercicio 1
-|descripcion=Marca el número que quieras en la ventana del control inferior y pulsa intro, después puedes ir variando el valor del número de uno en uno utilizando los triángulos arriba y abajo. +|duracion=6´54"
-El ordenador te indicará si ese número es primo o compuesto. En caso de ser compuesto te indicará además por qué número se le puede dividir después del 1.+|url1=https://www.youtube.com/watch?v=8fIExtr_Nkk&index=3&list=PLWRbPOo5oaTdkjULDYWW9nD0VBzgmf239
-El número más grande que puedes marcar es el 10.000.000.000+|sinopsis=*Números primos y compuestos.
- +*Averigua si son primos o compuestos los siguientes números: 263, 137 y 119.
-<center><iframe>+}}
-url=http://maralboran.org/web_ma/descartes/1y2_eso/Multiplos_divisores/primos_1.html+{{Video_enlace_math2me
-width=400+|titulo1=Ejercicio 2
-height=420+|duracion=13´47"
-name=myframe+|url1=https://www.youtube.com/watch?v=UJbKeig7GFI
-</iframe></center>+|sinopsis=Averigua si son primos o compuestos los siguientes números: 43, 293 y 611.
-|url1=http://maralboran.org/web_ma/descartes/1y2_eso/Multiplos_divisores/primos_1.html+}}
}} }}
{{p}} {{p}}
 +{{wolfram desplegable|titulo=Números primos|contenido=
{{wolfram numeros primos}} {{wolfram numeros primos}}
 +}}
{{p}} {{p}}

Revisión actual

  • Un número primo es un número natural, mayor que 1, que sólo tiene dos divisores: él mismo y el 1.
  • Un número es compuesto si tiene más de dos divisores.

ejercicio

Propiedad


  • Un número compuesto puede ponerse como producto de dos números distintos de él y la unidad.
  • Este proceso se puede repetir, con cada uno de los factores, hasta que el número quede descompuesto en producto de factores primos. A esto se le llama descomponer un número en factores primos.

Números primos menores que 100
Aumentar
Números primos menores que 100

Criba de Eratóstenes

La criba de Eratóstenes es un algoritmo que permite hallar todos los números primos menores que un número natural dado n, que desarrolló el célebre matemático griego Eratóstenes en el siglo III a.C.

ejercicio

Procedimiento


Se forma una tabla con todos los números naturales comprendidos entre 2 y n, y se van tachando los números que no son primos de la siguiente manera:

  • Comenzando por el 2, se tachan todos sus múltiplos.
  • Comenzando de nuevo, cuando se encuentra un número entero que no ha sido tachado, ese número es declarado primo, y se procede a tachar todos sus múltiplos, así sucesivamente.
  • El proceso termina cuando el cuadrado del mayor número declarado como primo es mayor que n. Tras haber tachado sus múltiplos, los número que quedan sin tachar son todos los primos entre 2 y n.

Animación de la criba de Eratóstenes para números primos menores que 120. Se incluye la optimización de comenzar por los cuadrados de números primos.
Aumentar
Animación de la criba de Eratóstenes para números primos menores que 120. Se incluye la optimización de comenzar por los cuadrados de números primos.

Determinemos, mediante el siguiente ejemplo, el proceso para determinar la lista de los números primos menores de 20.

  1. Primer paso: listar los números naturales comprendidos entre 2 y 20.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2. Segundo paso: Se toma el primer número no rayado ni marcado, como número primo.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3. Tercer paso: Se tachan todos los múltiplos del número que se acaba de indicar como primo.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4. Cuarto paso: Si el cuadrado del primer número que no ha sido rayado ni marcado es inferior a 20, entonces se repite el segundo paso. Si no, el algoritmo termina, y todos los enteros no tachados son declarados primos.
Como 3² = 9 < 20, se vuelve al segundo paso:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5. Quinto paso: En el cuarto paso, el primer número que no ha sido tachado ni marcado es 5. Se tachan sus múltiplos. Como su cuadrado es mayor que 20, el algoritmo termina y se consideran primos todos los números que no han sido tachados.
Como resultado se obtienen los números primos comprendidos entre 2 y 20, y estos son: 2, 3, 5, 7, 11, 13, 17, 19.



Cómo averiguar si un número es primo

ejercicio

Procedimiento para ver si un número es primo


Para averiguar si un número es primo, efectuamos divisiones por los distintos números primos: 2, 3, 5, 7,... hasta que la división sea exacta (entonces no es primo) o el cociente sea menor o igual que el siguiente número primo por el que toca dividir (entonces es primo).

ejercicio

Ejemplo: Averiguar si un número es primo


Averigua si el número 167 es primo.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda