Plantilla:Ramas infinitas de las funciones racionales
De Wikipedia
Revisión de 17:50 26 jun 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 17:32 19 mar 2020 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 1: | Línea 1: | ||
- | {{Teorema_sin_demo|titulo=Proposición|enunciado=Consideremos la función racional en la variable x, ya simplificada: | + | {{Teorema_sin_demo|titulo=Proposición|enunciado=Consideremos la función racional en la variable x, ya '''simplificada''' (es decir, si el numerador y el denominador tienen factores comunes, cosa que ocurre si se anulan simultáneamente en algún punto, factorizaremos y simplificaremos dichos factores): |
{{p}} | {{p}} | ||
<center><math>f(x)=\cfrac{P(x)}{Q(x)}=\cfrac{a_nx^n+a_{n-1}x^{n-1}+ \cdots + a_1 x + a_0}{b_m x^m+b_{m-1}x^{m-1}+ \cdots + b_1 x + b_0}\;</math></center> | <center><math>f(x)=\cfrac{P(x)}{Q(x)}=\cfrac{a_nx^n+a_{n-1}x^{n-1}+ \cdots + a_1 x + a_0}{b_m x^m+b_{m-1}x^{m-1}+ \cdots + b_1 x + b_0}\;</math></center> |
Revisión de 17:32 19 mar 2020
Proposición
Consideremos la función racional en la variable x, ya simplificada (es decir, si el numerador y el denominador tienen factores comunes, cosa que ocurre si se anulan simultáneamente en algún punto, factorizaremos y simplificaremos dichos factores):
La función tiene las siguientes ramas infinitas:
- Asíntotas verticales:
- Si es una raíz de Q(x), entonces la recta es una asíntota vertical de .
- Asíntotas horizontales:
- Si , entonces la recta es una asíntota horizontal de , tanto por , como por .
- Si , entonces la recta es una asíntota horizontal de , tanto por , como por .
- Asíntotas oblicuas:
- Si , tienen una asíntota oblicua, tanto por , como por . Dicha asíntota es igual al cociente de la división entre y .
- Ramas parabólicas:
- Si , entonces tiene una rama parabólica, tanto por , como por .
Estudio de las ramas infinitas de la función .
Estudio de las ramas infinitas de la función .
Estudio de las ramas infinitas de la función . (Caso con discontinuidad evitable)
Ejercicios resueltos
Halla todas las ramas infinitas de las siguientes funciones:
- a) b) c)
a) A.V.: x=0, x=2; A.H.: y=1
b) A.V.: x=2; A.O.: y=x-3
c) A.V.: x=3; R.I.
Haz uso de la siguiente escena de Geogebra para comprobar las soluciones:
En esta escena podrás representar funciones definidas en hasta 4 trozos.