Plantilla:Tipos de discontinuidades

De Wikipedia

(Diferencia entre revisiones)
Revisión de 07:48 15 abr 2018
Coordinador (Discusión | contribuciones)
(Discontinuidad esencial de segunda especie)
← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)

Línea 1: Línea 1:
-===Discontinuidad evitable===+{{Videotutoriales|titulo=Tipos de discontinuidades|enunciado=
 +{{Video_enlace_matesandres
 +|titulo1=Tutorial 1
 +|duracion=9'21"
 +|sinopsis=Continuidad de una función en un punto. Tipos de discontinuidades
 +|url1=https://youtu.be/7Z-2vM-7-2Q
 +}}
 +{{Video_enlace_TodoSobresaliente
 +|titulo1=Tutorial 2
 +|duracion=16'07"
 +|sinopsis=Ejemplos de los distintos tipos de discontinuidad.
 +|url1=https://youtu.be/W35mEXQVBnc
 +}}
 +{{Video_enlace_8cifras
 +|titulo1=Tutorial 3
 +|duracion=5'33"
 +|sinopsis=Ejemplos gráficos de los distintos tipos de discontinuidad.
 +|url1=https://youtu.be/Fe5hIvO3rOI?list=PLpbLLqs33gIkbfeAzPddpOc6wnOu309-K
 +}}
 +}}
{{Caja_Amarilla|texto=Una función <math>f(x)\;</math> tiene una '''discontinuidad evitable''' en un punto <math>x=a\;</math> si existe <math>\lim_{x \to a} f(x)=L \in \mathbb{R}</math> pero éste no coincide con <math>f(a)\;</math>, bien porque <math>f(x)\;</math> no esté definida en <math>x=a\;</math> o bien porque simplemente sean distintos. {{Caja_Amarilla|texto=Una función <math>f(x)\;</math> tiene una '''discontinuidad evitable''' en un punto <math>x=a\;</math> si existe <math>\lim_{x \to a} f(x)=L \in \mathbb{R}</math> pero éste no coincide con <math>f(a)\;</math>, bien porque <math>f(x)\;</math> no esté definida en <math>x=a\;</math> o bien porque simplemente sean distintos.
}} }}
- 
{{p}} {{p}}
-{{Tabla50|celda1=[[Imagen:discont_evitable_2.png |300 px|center]]{{p}}<center>Evitable (no definida en un punto, tiene un hueco){{p}}<math>\lim_{x \to a} f(x)=L \in \mathbb{R}</math>, pero <math>\not\exist f(a)</math></center>+===Discontinuidad evitable===
-|celda2=[[Imagen:discont_evitable_1.png |300 px|center]]<center>Evitable (punto desplazado que deja un hueco){{p}}<math>\lim_{x \to a} f(x)=L \in \mathbb{R}</math>, pero <math>L \ne f(a)</math></center>+{{Tabla50|celda1=[[Imagen:discont_evitable_2.png |300 px|center]]{{p}}<center>Evitable (no definida en un punto, tiene un hueco){{p}}<math>\lim_{x \to a} f(x)=c \in \mathbb{R}</math>, pero <math>\not\exist f(a)</math></center>
 +|celda2=[[Imagen:discont_evitable_1.png |300 px|center]]<center>Evitable (punto desplazado que deja un hueco){{p}}<math>\lim_{x \to a} f(x)=c \in \mathbb{R}</math>, pero <math>c \ne f(a)=d</math></center>
}} }}
{{p}} {{p}}
Línea 208: Línea 227:
}} }}
{{p}} {{p}}
-{{p}} 
-{{b}} 
{{Warning|titulo=Advertencia|texto= {{Warning|titulo=Advertencia|texto=
Algunos autores incluyen dentro de las discontinuidades de segunda especie los siguientes casos: Algunos autores incluyen dentro de las discontinuidades de segunda especie los siguientes casos:
Línea 218: Línea 235:
}} }}
{{p}} {{p}}
-No obstante, en estos casos, nosotros no diremos que la función sea discontinua en "a". Para explicar esto con rigor es necesario recurrir a la [https://es.wikipedia.org/wiki/Funci%C3%B3n_continua#Continuidad_de_una_funci.C3.B3n_en_un_punto| definición formal de continuidad] que se verá en cursos posteriores.+No obstante, en estos casos, nosotros no diremos que la función sea discontinua en "a". Para explicar esto con rigor es necesario recurrir a la [https://es.wikipedia.org/wiki/Funci%C3%B3n_continua#Continuidad_de_una_funci.C3.B3n_en_un_punto definición formal de continuidad] que se verá en cursos posteriores.
Como ejemplo de esto que estamos diciendo tienes el siguiente video: Como ejemplo de esto que estamos diciendo tienes el siguiente video:

Revisión actual

Una función f(x)\; tiene una discontinuidad evitable en un punto x=a\; si existe \lim_{x \to a} f(x)=L \in \mathbb{R} pero éste no coincide con f(a)\;, bien porque f(x)\; no esté definida en x=a\; o bien porque simplemente sean distintos.

Discontinuidad evitable

Evitable (no definida en un punto, tiene un hueco)

\lim_{x \to a} f(x)=c \in \mathbb{R}, pero \not\exist f(a)
Evitable (punto desplazado que deja un hueco)

\lim_{x \to a} f(x)=c \in \mathbb{R}, pero c \ne f(a)=d

ejercicio

Ejemplo: Discontinuidad evitable


Comprueba en qué puntos presentan las siguientes funciones una discontinuidad evitable:

a) y=\cfrac{x^2-2x}{(x-2)}         b) y = \begin{cases} x & \mbox{si }x \ne 1 \\  3 & \mbox{si }x=1 \end{cases}

Discontinuidad esencial de primera especie

Una función f(x)\; tiene una discontinuidad esencial de primera especie de salto finito en un punto x=a\; si existen los límites laterales en dicho punto y son finitos, pero estos no coinciden:

\lim_{x \to a^+} f(x) \ne \lim_{x \to a^-} f(x)

Se llama salto al valor absoluto de la diferencia enter ambos límites:

salto=|\lim_{x \to a^+} f(x) - \lim_{x \to a^-} f(x)|

Nota: f(a)\; puede estar definida o no, y puede coincidir o no con uno de los dos límites laterales.

Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; \not\exist f(a)
Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; f(a)=c

Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; f(a)=d
Salto finito (Salto=d-c)

\lim_{x \to a^+} f(x)=d \, ;  \lim_{x \to a^-} f(x)=c \, ; f(a)=e

ejercicio

Ejemplo: Discontinuidad de salto finito


Comprueba en qué punto presenta la siguiente función una discontinuidad de salto finito y averigua el valor del salto:

y = \begin{cases} x & \mbox{si }x \le 2 \\  1 & \mbox{si }x>2 \end{cases}

Una función f(x)\; tiene una discontinuidad esencial de primera especie de salto infinito si existen los límites laterales, siendo uno finito y otro infinito.

Nota: f(a)\; puede estar definida o no, y puede coincidir o no con el límite lateral finito.

Salto infinito

\lim_{x \to a^+} f(x)=+\infty \, ;  \lim_{x \to a^-} f(x)=c

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Salto infinito

\lim_{x \to a^+} f(x)=-\infty \, ;  \lim_{x \to a^-} f(x)=c

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Salto infinito

\lim_{x \to a^+} f(x)=c \, ;  \lim_{x \to a^-} f(x)=+\infty

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

Salto infinito

\lim_{x \to a^+} f(x)=c \, ;  \lim_{x \to a^-} f(x)=-\infty

En este caso "f(a)" no está definida pero podría estarlo y coincidir o no con "c"

ejercicio

Ejemplo: Discontinuidad de salto infinito


Comprueba en qué punto presenta la siguiente función una discontinuidad de salto ifinito:

y = \begin{cases} x & \mbox{si }x \le 0 \\  \cfrac{1}{x} & \mbox{si }x>0 \end{cases}

Una función f(x)\; tiene una discontinuidad esencial de primera especie asintótica si si existen los límites laterales, siendo ambos + o - infinito, pero no necesariamente iguales.

Nota: f(a)\; puede estar definida o no.

Asintótica

\lim_{x \to a^+} f(x)=-\infty \, ;  \lim_{x \to a^-} f(x)=+\infty

En este caso "f(a)" no está definida pero podría estarlo

Asintótica

\lim_{x \to a^+} f(x)=+\infty \, ;  \lim_{x \to a^-} f(x)=+\infty

En este caso "f(a)" no está definida pero podría estarlo

Asintótica

\lim_{x \to a^+} f(x)=+\infty \, ;  \lim_{x \to a^-} f(x)=-\infty

En este caso "f(a)" no está definida pero podría estarlo

Asintótica

\lim_{x \to a^+} f(x)=-\infty \, ;  \lim_{x \to a^-} f(x)=-\infty

En este caso "f(a)" no está definida pero podría estarlo

ejercicio

Ejemplo: Discontinuidad asintótica


Comprueba en qué puntos presentan las siguientes funciones una discontinuidad asintótica:

a) y = \cfrac{2}{x+2}          b) y = \cfrac{1}{x^2}

Discontinuidad esencial de segunda especie

Una función f(x)\; tiene una discontinuidad de segunda especie si no existe alguno de los límites laterales.

Nota: f(a)\; puede estar definida o no.

Segunda especie

\not \exist \lim_{x \to a^+} f(x) \, ; \not \exist \lim_{x \to a^-} f(x)

Es oscilante por ambos lados

"f(a)" puede estar definida o no

Segunda especie

\not \exist \lim_{x \to a^+} f(x) \, ; \lim_{x \to a^-} f(x)=c

Es oscilante por la derecha

"f(a)" puede estar definida o no

Segunda especie

\not \exist \lim_{x \to a^-} f(x) \, ; \lim_{x \to a^+} f(x)=c

Es oscilante por la izquierda

"f(a)" puede estar definida o no

ejercicio

Ejemplo: Discontinuidad de segunda especie


Comprueba en qué punto presenta la siguiente función una discontinuidad de segunda especie:

y = sen \, \frac{1}{x}



Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda