Números naturales: Potencias

De Wikipedia

(Diferencia entre revisiones)
Revisión de 08:46 7 ago 2007
Coordinador (Discusión | contribuciones)
(Potenciación de naturales)
← Ir a diferencia anterior
Revisión de 08:52 7 ago 2007
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 160: Línea 160:
}} }}
{{p}} {{p}}
 +==Ejercicios==
 +{{ejercicio
 +|titulo=Ejercicios
 +|cuerpo=
 +
 +{{ejercicio_cuerpo
 +|enunciado=
 +
 +'''1. '''Simplifica:
 +
 +:a) <math>(x^2)^5\,\!</math>{{b}}b) <math>x^3 \cdot x^4 \cdot x^2</math>{{b}}c) <math>(x^3)^2 \cdot (x^2)^4 \cdot x</math>
 +{{p}}
 +|sol=
 +a) <math>x^{10}\,\!</math>{{b}}b) <math>x^9\,\!</math>{{b}}c) <math>x^{15}\,\!</math>
 +
 +}}
 +{{ejercicio_cuerpo
 +|enunciado=
 +
 +'''2. '''Simplifica:
 +
 +:a) <math>\cfrac{3^5}{3^2}</math>{{b}}b) <math>\cfrac{5^4}{5^2}</math>{{b}}c) <math>\cfrac{2^3 \cdot 5^4}{2 \cdot 5^2}</math>
 +<p></p>
 +|sol=
 +a) <math>3^3\,\!</math>{{b}}b) <math>5^2\,\!</math>{{b}}c) <math>2^2 \cdot 5^2</math>
 +}}
 +}}

Revisión de 08:52 7 ago 2007

Potenciación de naturales

Una potencia de base a\;\! y exponente n\;\! consiste en multiplicar n\;\! veces la base a\;\!.

a^n =a \cdot a \cdots a\;\!

Una potencia es un modo abreviado de escribir un producto de un número por sí mismo.

En la expresión de la potencia de un número consideramos dos partes:

  • La base es el número que se multiplica por sí mismo
  • El exponente es el número que indica las veces que la base aparece como factor.

Una potencia se escribe tradicionalmente poniendo el número base de tamaño normal y junto a él, arriba a su derecha se pone el exponente, de tamaño más pequeño.

Para nombrar o leer una potencia decimos primeramente el número base, después decimos lo referente al exponente. Cuando el exponente es 2 se dice "elevado al cuadrado", cuando el exponente es 3 se dice "elevado al cubo". En los demás casos se dice "elevado a la cuarta, quinta, sexta... potencia".

ejercicio

Actividad Interactiva: Potencias


Actividad 1. Potencia de un número natural.

Propiedades de las potencias de naturales

a^0=1\,\!  a^m \cdot a^n=a^{n+m}  \cfrac{a^m}{a^n}=a^{m-n}\,\!  (a^m)^n=a^{m \cdot n}

(a^n \cdot b^n)=(a \cdot b)^n  \cfrac{a^n}{b^n}=\left ( \frac{a}{b} \right )^n\,\!



ejercicio

Actividad Interactiva: Propiedades de las potencias


Actividad 1. Propiedades de las potencias de números naturales.
Actividad 2. Autoevaluación.
Actividad 3. Juegos.

Ejercicios

ejercicio

Ejercicios


1. Simplifica:

a) (x^2)^5\,\! b) x^3 \cdot x^4 \cdot x^2 c) (x^3)^2 \cdot (x^2)^4 \cdot x

2. Simplifica:

a) \cfrac{3^5}{3^2} b) \cfrac{5^4}{5^2} c) \cfrac{2^3 \cdot 5^4}{2 \cdot 5^2}

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda