Funciones: Tendencias. Periodicidad
De Wikipedia
Revisión de 09:30 15 ene 2009 Coordinador (Discusión | contribuciones) (→Ejercicios) ← Ir a diferencia anterior |
Revisión actual Coordinador (Discusión | contribuciones) |
||
Línea 1: | Línea 1: | ||
- | {{Menú Matemáticas 3ESO | + | {{Menú Matemáticas Contenidos Generales |
- | |ir= | + | |ir= |
|ampliar= | |ampliar= | ||
- | [http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/materiales/3eso/solucionlibro/unidad10.pdf Ejercicios 1]<br>[http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/materiales/3eso/funciones/teoriainterpretaciondegraficas/teoriainterpretaciondegraficas.htm Ejercicios 2] | + | |repasar= |
- | |repasar=[http://descartes.cnice.mecd.es/3_eso/Coordenadas_cartesianas/Coordenadas_cartesianas.htm Coordenadas] | + | |enlaces= |
- | |enlaces=[http://es.wikipedia.org/wiki/Funci%C3%B3n_%28matem%C3%A1tica%29 Función]<br>[http://es.wikipedia.org/wiki/Lista_de_funciones Lista de funciones] | + | |
}} | }} | ||
{{p}} | {{p}} |
Revisión actual
Tendencias
Decimos que una función tiende a un valor
cuando la variable independiente tiende a un valor
, si los valores de la variable
se acercan a
cuando la variable
se acerca a
.
Simbólicamente:

En la anterior expresión la tendencia de la variable independiente puede ser a o
en vez de
. Igualmente, la tendencia de la variable dependiente puede ser a
y
en vez de a un valor
.
Así cuando, por ejemplo, la variable se haga infinitamente grande y los correspondientes valores de la función se acerquen a un valor
, escribiremos:

Ejercicio Resuelto: Tendencia de una función
1. Compramos un coche por 12.000 €, y cada año que pasa su precio se devalua un 20%.
- a) Haz una tabla que exprese el precio del coche durante los próximos años.
- b) Representa gráficamente los resultados del apartado a).
- c) Encuentra una fórmula que exprese esta función.
- d) ¿Cómo es la variable independiente: continua o discreta?
- e) ¿Cuál es el dominio de esta función?. ¿Y su imagen?
- f) ¿Cual es la tendencia de esta función segun pasan los años?
- g) Describe el crecimiento e indica si tiene máximos o mínimos.
Periodicidad
Una función es periódica si su gráfica se va repitiendo a intervalos. Al menor valor posible, T, de la longitud de dicho intervalo, se le llama periodo. Se cumple:![]() |