Números complejos: Definición (1ºBach)
De Wikipedia
Revisión de 20:00 4 mar 2009 Coordinador (Discusión | contribuciones) (→Representación gráfica de los números complejos) ← Ir a diferencia anterior |
Revisión de 09:14 10 mar 2009 Coordinador (Discusión | contribuciones) (→Necesidad de ampliación del campo numérico) Ir a siguiente diferencia → |
||
Línea 7: | Línea 7: | ||
{{p}} | {{p}} | ||
==Necesidad de ampliación del campo numérico== | ==Necesidad de ampliación del campo numérico== | ||
+ | [[Imagen:descartes.jpg|right]] | ||
Hay ecuaciones como | Hay ecuaciones como | ||
Línea 17: | Línea 18: | ||
Vamos a definir un nuevo conjunto que amplie al conjunto de los números reales y en el cual estas ecuaciones si tengan solución. Ese conjunto va a ser el conjunto de los '''números complejos'''. Para ello vamos a empezar dando sentido a las raíces de números negativos. | Vamos a definir un nuevo conjunto que amplie al conjunto de los números reales y en el cual estas ecuaciones si tengan solución. Ese conjunto va a ser el conjunto de los '''números complejos'''. Para ello vamos a empezar dando sentido a las raíces de números negativos. | ||
{{p}} | {{p}} | ||
+ | Desde [[Al-Jwarizmi]] (800 DC), precursor del Álgebra, que sólo obtenía las soluciones positivas de las ecuaciones, pasaron más de ocho siglos, hasta que finalmente [[Descartes]] en 1637 puso nombre a las raíces cuadradas de números negativos, imaginarios, y dedujo que las soluciones no reales de las ecuaciones son números de la forma a+bi, con a y b reales. Durante todo ese tiempo se manejaron esas soluciones sin definirlas claramente, aunque sí Albert Girard en 1629 afirmaba ya que una ecuación polinómica de grado n, tiene n soluciones. | ||
==Unidad imaginaria== | ==Unidad imaginaria== |
Revisión de 09:14 10 mar 2009
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Necesidad de ampliación del campo numérico
Hay ecuaciones como
que no tienen solución en el conjunto de los números reales
Vamos a definir un nuevo conjunto que amplie al conjunto de los números reales y en el cual estas ecuaciones si tengan solución. Ese conjunto va a ser el conjunto de los números complejos. Para ello vamos a empezar dando sentido a las raíces de números negativos.
Desde Al-Jwarizmi (800 DC), precursor del Álgebra, que sólo obtenía las soluciones positivas de las ecuaciones, pasaron más de ocho siglos, hasta que finalmente Descartes en 1637 puso nombre a las raíces cuadradas de números negativos, imaginarios, y dedujo que las soluciones no reales de las ecuaciones son números de la forma a+bi, con a y b reales. Durante todo ese tiempo se manejaron esas soluciones sin definirlas claramente, aunque sí Albert Girard en 1629 afirmaba ya que una ecuación polinómica de grado n, tiene n soluciones.
Unidad imaginaria
Se denomina unidad imaginaria a . Se designa por la letra
Con esta definición, la ecuación anterior ahora si tiene solución "imaginaria":
Potencias de la unidad imaginaria
A partir de se repiten cíclicamente los valores.
El conjunto de los números complejos
Definimos el conjunto de los números complejos de la siguiente manera:
Forma binómica de un número complejo
- La expresión se denomina forma binómica de un número complejo. En ella, a se le llama parte real y a parte imaginaria. Si escribimos , entonces se dice que y
- Si , lo que tenemos es un número real, por tanto .
- Si , lo que tenemos no es un número real, es un número imaginario.
- Si y , se le llama número imaginario puro.
- Dos números complejos en forma binómica son iguales si tienen iguales sus partes reeales y sus partes imaginarias.
Opuesto y conjugado de un complejo
- Se define el opuesto de un complejo como el número complejo .
- Se define el conjugado de un complejo como el número complejo .
Proposición
- Cualquier ecuación de segundo grado con coeficientes reales que no tenga solución real tiene dos soluciones imaginarias que son números complejos conjugados
Veámoslo con un ejemplo:
Representación gráfica de los números complejos
Para representar los números reales utilizabamos una recta, la recta real. Para representar los números complejos vamos a utilizar un plano, el plano complejo. ¿Por qué?. Muy simple, un número complejo en forma binómica queda determinado por un par de números reales: su parte real, y su parte imaginaria, . De esta manera, el par representa las coordenadas de un punto del plano. Diremos que es el afijo del número complejo .
Ahora, al eje X, lo llamaremos eje real, y al eje Y, eje imaginario. También podemos representar al número complejo mediante un vector de origen y extremo . Algunos fractales son representados en el plano complejo, como los conjuntos de Mandelbrot y de Julia. |
Video: Fractales... la geometría del caos (18´)
El ordenador los ha puesto de moda. Y sin embargo ya eran conocidos a principios de siglo. Nos referimos a los fractales. Son los objetos matemáticos más atractivos, espectaculares y enigmáticos. A medio camino entre la linea y el plano, entre el plano y el espacio, rompen hasta con el concepto clásico de dimensión. Sus dimensiones no son números enteros, de ahí su extraño nombre. Y sin embargo se pueden obtener mediante simples iteracciones, es decir, repitiendo indefinidamente procedimientos geométricos o funcionales muy simples. Han dado origen a una nueva geometría: la geometría fractal. Una nueva herramienta matemática capaz de arrojar un poco de luz sobre los fenómenos caóticos y de mostrarnos que incluso en el caos es posible encontrar un determinado orden.