Plantilla:Valor absoluto (1º Bach)
De Wikipedia
(Diferencia entre revisiones)
Revisión de 07:27 1 sep 2016 Coordinador (Discusión | contribuciones) (→Ejemplos) ← Ir a diferencia anterior |
Revisión de 07:27 1 sep 2016 Coordinador (Discusión | contribuciones) (→Videotutoriales) Ir a siguiente diferencia → |
||
Línea 78: | Línea 78: | ||
}} | }} | ||
- | ==Videotutoriales== | + | ===Videotutoriales=== |
{{Video_enlace2 | {{Video_enlace2 | ||
|titulo1=Valor absoluto de un número real | |titulo1=Valor absoluto de un número real |
Revisión de 07:27 1 sep 2016
Valor absoluto de un número real
(pág. 30)
El valor absoluto o módulo de un número real es el propio número , si es positivo, o su opuesto, , si es negativo. Es decir:
Nótese que el valor absoluto de un número siempre será positivo. Desde un punto de vista geométrico, el valor absoluto de un número real corresponde a la distancia a lo largo de la recta real desde hasta el cero.
Como consecuencia, en una inecuación:
- Lo que está sumando en un lado de la desigualdad, pasa restando al otro miembro sin afectar a la desigualdad. Y viceversa.
- Lo que está multiplicando a todo un miembro, pasa dividiendo al otro miembro. Y viceversa. En este caso la desigualdad sólo cambia de sentido si el número que pasa multiplicando o dividiendo es negativo.
¿Cuándo debe cambiar de sentido una desigualdad? (10'00") Sinopsis:
¿Cuándo debe cambiar de sentido una desigualdad?. Ejemplos.
(pág. 30)
Ejercicios resueltos: Valor absoluto
- 1) Calcula el valor absoluto de los siguientes números:
- 2) ¿Para qué valores de x se cumplen las siguientes expresiones?
- a)
- 2) ¿Para qué valores de x se cumplen las siguientes expresiones?
- b)
- c)
- 3) ¿Para qué valores de x se cumplen las siguientes desigualdades?
- b)
- 3) ¿Para qué valores de x se cumplen las siguientes desigualdades?
- b)
- c)
Solución:
1)
2)
- a)
- b)
- c)
3)
- a)
- b)
- c)
Actividad: Valor absoluto
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|
Videotutoriales
Valor absoluto de un número real (2´47") Sinopsis:
- Definición del valor absoluto de un número.
- Ejemplos.
- Propiedades del valor absoluto.
Distancia entre dos puntos (3'31") Sinopsis:
- Definición de distancia entre dos puntos de la recta real:
- Ejemplos.
Ejercicios
(pág. 30)
Ejercicios propuestos: Valor absoluto |