Plantilla:Valor absoluto (1º Bach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 18:19 6 may 2017
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 17:50 5 jun 2017
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 33: Línea 33:
}} }}
-}} 
-{{p}} 
-{{Video_enlace_fonemato 
-|titulo1=Valor absoluto de un número real 
-|duracion=2´47" 
-|sinopsis= 
-*Definición del valor absoluto de un número. 
-*Ejemplos. 
-*Propiedades del valor absoluto. 
-|url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/01-funciones-reales-de-una-variable-real-2/08-valor-absoluto-de-un-numero-real-4#.VCVb2hZ8HA8 
}} }}
{{p}} {{p}}
Línea 58: Línea 48:
:'''6. '''{{b}} <math>|x + y| \le |x|+|y|</math> :'''6. '''{{b}} <math>|x + y| \le |x|+|y|</math>
 +}}
 +{{p}}
 +{{Videotutoriales|titulo=Valor absoluto de un número real|enunciado=
 +{{Video_enlace_clasematicas
 +|titulo1=Tutorial 1
 +|duracion=13´53"
 +|sinopsis=Tutorial en el que se explica y trabaja el concepto matemático de valor absoluto de un número real y expresiones sencillas.
 +
 +*00:00 a 03:25: Definición matemática de valor absoluto y ejemplos iniciales.
 +*03:25 a 11:10: Cálculo del valor absoluto de expresiones numéricas sencillas.
 +*11:10 a 13:53: Propiedades del Valor Absoluto.
 +|url1=https://www.youtube.com/watch?v=zI7WbIu9p2w&index=5&list=PLZNmE9BEzVIldr5sFGtnV3nRU974wLtCK
 +}}
 +{{p}}
 +{{Video_enlace_fonemato
 +|titulo1=Tutorial 2
 +|duracion=2´47"
 +|sinopsis=
 +*Definición del valor absoluto de un número.
 +*Ejemplos.
 +*Propiedades del valor absoluto.
 +|url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/01-funciones-reales-de-una-variable-real-2/08-valor-absoluto-de-un-numero-real-4#.VCVb2hZ8HA8
 +}}
}} }}
{{p}} {{p}}

Revisión de 17:50 5 jun 2017

El valor absoluto o módulo de un número real a\; es el propio número a\;, si es positivo o nulo. Y su opuesto, -a\;, si es negativo. Es decir:

|a| = \begin{cases}   \;\;\;a \, , & \mbox{si } a \ge 0\\        -a\, , & \mbox{si } a < 0  \end{cases}

Desde un punto de vista geométrico, el valor absoluto de un número real a\; corresponde a la distancia a lo largo de la recta real desde a\; hasta el cero.

Propiedades del valor absoluto

ejercicio

Propiedades del valor absoluto


1.  |x|>0 \, ,\; \forall x \ne 0
2.   \forall k>0 \, , \,  \ |x|=k \iff x=k \ \ \or \ \ x=-k
3.   \forall k>0 \, , \,  \ |x|<k \iff -k < x < k
4.   \forall k>0 \, , \,  \ |x|>k \iff x>k \ \ \or \ \ x<-k
5.   |x \cdot y|= |x| \cdot |y|
6.   |x + y| \le |x|+|y|

ejercicio

Reglas para trabajar con desigualdades


Sean x, y, z \in \mathbb{R}, se cumplen las siguientes propiedades:

1.  x<y \Rightarrow x+z<y+z
2.  x<y~;~ z>0 \Rightarrow x \cdot z<y \cdot z
3.  x<y~;~ z<0 \Rightarrow x \cdot z>y \cdot z
4.  x<y \, ; \ x,y \ne 0 \Rightarrow \cfrac{1}{x} > \cfrac{1}{y}

Como consecuencia, en una inecuación:

  • Lo que está sumando en un lado de la desigualdad, pasa restando al otro miembro sin afectar a la desigualdad. Y viceversa.
  • Lo que está multiplicando a todo un miembro, pasa dividiendo al otro miembro. Y viceversa. En este caso la desigualdad sólo cambia de sentido si el número que pasa multiplicando o dividiendo es negativo.

Inecuaciones con valor absoluto

(pág. 33)

ejercicio

Ejercicios resueltos: Valor absoluto


¿Para qué valores de x se cumplen las siguientes desigualdades?

a) |x| \ge 3\;
b) |x-2|\le 3\;

Ecuaciones con valor absoluto

ejercicio

Procedimiento


Para resolver ecuaciones con valor absoluto utilizaremos la 2ª de las propiedades del valor absoluto, que dice:

\forall k>0 \, , \,  \ |x|=k \iff x=k \ \ \or \ \ x=-k

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda