Plantilla:Factorización de polinomios usando identidades notables
De Wikipedia
Revisión de 06:36 29 may 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 07:36 29 may 2017 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 8: | Línea 8: | ||
|sol= | |sol= | ||
- | a) <math>4x^2-9=(2x+3)(2x-3) \!</math> | + | '''Solución:''' |
- | b) <math>x^2+4x+4 = (x+2)^2\!</math> | + | |
+ | '''a)''' Al tratarse de un binomio cuyos términos están restando, sólo podemos ponerlo como diferencia de cuadrados. Extrayendo las raíces cuadradas de cada término tenemos: | ||
+ | |||
+ | <math>\left . \begin{matrix}\sqrt{4x^2}=2x \\ \sqrt{9}=3 \end{matrix} \right \} \ \rightarrow \ 4x^2-9=(2x+3)(2x-3) \!</math> | ||
+ | '''b)''' Al tratarse de un trinomio, buscaremos dos de sus términos que sean cuadrados perfectos y calcularemos su raíz cuadrada: | ||
+ | |||
+ | <math>\left . \begin{matrix}\sqrt{x^2}=x \\ \sqrt{4}=2 \end{matrix} \right \} \ \rightarrow \ x^2+4x+4 =(x+2)^2 \!</math> | ||
+ | |||
+ | Para confirmar que esa es la factorización, comprobaremos que el doble producto del primero por el segundo es igual al otro término: | ||
+ | |||
+ | :<math>2 \cdot x \cdot 2 =4x\;</math> | ||
+ | |||
+ | En efecto, luego esa es la factorización. | ||
}} | }} | ||
{{p}} | {{p}} |
Revisión de 07:36 29 may 2017
Mediante productos notables podemos transformar un polinomio en un producto de factores.
Ejemplos: Factorización de polinomios usando productos notables
Factoriza:
- a)
- b)
Solución:
a) Al tratarse de un binomio cuyos términos están restando, sólo podemos ponerlo como diferencia de cuadrados. Extrayendo las raíces cuadradas de cada término tenemos:
b) Al tratarse de un trinomio, buscaremos dos de sus términos que sean cuadrados perfectos y calcularemos su raíz cuadrada:
Para confirmar que esa es la factorización, comprobaremos que el doble producto del primero por el segundo es igual al otro término:
![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: | ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza los siguientes polinomos usando diferencias de cuadrados:
![]() Factoriza los siguientes polinomos usando diferencias de cuadrados:
![]() Factoriza:
![]() Factoriza: ![]() Factoriza: ![]() Factoriza: |
![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: | ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza los siguientes polinomios usando trinomios cuadrado perfecto:
![]() Factoriza los siguientes polinomios usando trinomios cuadrado perfecto:
![]() Factoriza los siguientes polinomios usando trinomios cuadrado perfecto:
![]() Factoriza:
![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Factoriza: ![]() Averigua el valor de "c" y "d" de manera que ![]() Averigua el valor de "c" y "d" de manera que |

Factoriza:

Factoriza:

Factoriza: