Inecuaciones con una incógnita (1ºBach)

De Wikipedia

(Diferencia entre revisiones)

Revisión de 18:18 18 ene 2009

Tabla de contenidos

Inecuación

  • Una inecuación es una desigualdad entre expresiones algebraicas.
  • Para las desigualdades utilizaremos los símbolos: <\; (menor que); >\; (mayor que); \le\; (menor o igual que) y \ge\; (mayor o igual que).
  • Las inecuaciones que usan los dos primeros símbolos se llaman inecuaciones estrictas y las que utilizan los dos últimos, inecuaciones no estrictas.
  • Si las expresiones algebraicas son polinomios de grado 1, las inecuaciones se llaman lineales y si son de grado 2, cuadráticas.
  • Una solución de una inecuación es un conjunto de valores de las variables (uno de cada una) que hace que se cumpla la desigualdad.
  • Resolver una inecuación consiste en hallar todas sus soluciones.

Inecuaciones lineales con una incógnita

Una inecuación lineal con una incógnita es una inecuación, en la que las expresiones matemáticas que intervienen en la desigualdad, son polinomios de primer grado en una sola variable. En consecuencia, puede ponerse, mediante transformaciones, de alguna de estas formas:

ax+b<0 \ , \quad ax+b \le 0  \ , \quad ax+b>0 \ , \quad ax+b \ge 0 \qquad (a \ne 0)

donde a,b \in \mathbb{R} son los coeficientes y x \; es la variable.

Resolución de una inecuación lineal con una incógnita

Método algebraico de resolución

El método algebraico aplica las anteriores transformaciones para conseguir dejar despejada la incógnita.

ejercicio

Ejemplo: Inecuaciones lineales con una incógnita (método algebraico)


Resuelve la siguiente inecuación:

-3x+2<5\;

Método gráfico de resolución

ejercicio

Inecuaciones lineales con una incógnita (método gráfico)


Las soluciones de una inecuación lineal con una incógnita son los puntos de la semirrecta que se encuentra a uno de los dos lados del punto de corte de la recta y=ax+b \; con el eje de abscisas, es decir del punto x=-\cfrac{b}{a}.

En una de las semirrectas con origen ese punto se cumple la condición ax+b > 0\; y en la otra, la condición ax-b < 0\;.

Así, para determinar la semirrecta solución, basta con fijarse en los valores de la variable x para los que la recta y=ax+b \;está por encima o por debajo del eje de abscisas.

Si la inecuación no es estricta, el punto del extremo de la semirrecta, x=-\cfrac{b}{a}, es también solución, ya que para él se verifica la igualdad.

Inecuaciones cuadráticas con una incógnita

Una inecuación cuadrática con una incógnita es una inecuación en la que las expresiones matemáticas que intervienen en la desigualdad, son polinomios de segundo grado en una sola variable. En consecuencia, puede ponerse, mediante transformaciones, de alguna de estas formas:

ax^2+bx+c<0 \ , \quad ax^2+bx+c \le 0  \ , \quad ax^2+bx+c>0 \ , \quad ax^2+bx+c \ge 0 \qquad (a \ne 0)

Resolución de inecuaciones cuadráticas con una incógnita

Para resolver estas inecuaciones usaremos el método gráfico. Este método requiere que el miembro de la derecha de la inecuación sea cero, lo cual siempre se puede conseguir mediante transformaciones.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda