Semejanza de triángulos

De Wikipedia

(Diferencia entre revisiones)
Revisión de 20:06 9 ene 2008
Coordinador (Discusión | contribuciones)
(Aplicaciones de los criterios de semejanza)
← Ir a diferencia anterior
Revisión de 10:06 17 feb 2009
Coordinador (Discusión | contribuciones)
(Triángulos en la posición de Tales)
Ir a siguiente diferencia →
Línea 41: Línea 41:
|texto= |texto=
{{Tabla75 {{Tabla75
-|celda1=Dos triángulos ABC y A'B'C', con sus lados paralelos y encajados con un vértice común, se dice que están en la '''posición de [[Tales de Mileto|Tales]]''' +|celda1=Dos triángulos ABC y A'B'C', con sus lados paralelos y encajados con un vértice común, se dice que están en la '''posición de [[Tales]]'''
|celda2=<center>[[Imagen:triangulos_tales.png]]</center> |celda2=<center>[[Imagen:triangulos_tales.png]]</center>
}} }}

Revisión de 10:06 17 feb 2009

Tabla de contenidos

Triángulos semejantes

Dos triángulos son semejantes si tienen la misma forma. En tal caso cumplen que:

1. Los ángulos correspondientes son iguales:

\widehat{A}=\widehat{A}',\ \widehat{B}=\widehat{B}',\ \widehat{C}=\widehat{C}'

2. Los segmentos correspondientes son proporcionales:

\frac {\overline{A'B'}} {\overline{AB}} = \frac {\overline{A'C'}} {\overline{AC}} = \frac {\overline{B'C'}} {\overline{BC}}=r

donde r\;\!, se la razón de semejanza.

Teorema de Tales

ejercicio

Teorema de Tales


Dos rectas d y d', que se cortan en un punto O, cortadas por rectas paralelas AB y A'B', determinan segmentos proporcionales:

\frac {\overline{OA'}} {\overline{OA}} = \frac {\overline{OB'}} {\overline{OB}}

Triángulos en la posición de Tales

Dos triángulos ABC y A'B'C', con sus lados paralelos y encajados con un vértice común, se dice que están en la posición de Tales
Imagen:triangulos_tales.png

ejercicio

Triángulos en la posición de Tales


Dos triángulos son semejantes si y sólo si están en la posición de Tales.

Criterios de semejanza de triángulos

ejercicio

Criterios de semejanza de triángulos


  1. Dos triángulos son semejantes si tienen dos ángulos respectivamente iguales: \widehat{A}=\widehat{A}',\ \widehat{B}=\widehat{B}'
  2. Dos triángulos son semejantes si tienen dos lados proporcionales e igual el ángulo comprendido: \frac {a}{a'} = \frac {b}{b'} \ , \ \widehat{C}=\widehat{C}'
  3. Dos triángulos son semejantes si tienen los lados proporcionales: \frac {a}{a'} = \frac {b}{b'} = \frac {c}{c'}

Aplicaciones de los criterios de semejanza

ejercicio

Actividad Interactiva: Aplicaciones de los criterios de semejanza


Actividad 1: Cálculo de la altura conocida la sombra.
Actividad 2: Halla la altura de un árbol con la ayuda de un espejo y una cinta métrica.
Actividad 3: Semejanza en triángulos rectángulos.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda