Medida de la correlación (1ºBach)
De Wikipedia
Revisión de 08:25 25 jun 2017 Coordinador (Discusión | contribuciones) (→Covarianza) ← Ir a diferencia anterior |
Revisión de 08:27 25 jun 2017 Coordinador (Discusión | contribuciones) (→Covarianza) Ir a siguiente diferencia → |
||
Línea 33: | Línea 33: | ||
*Fórmulas para su cálculo. | *Fórmulas para su cálculo. | ||
*Interpretación de su signo. | *Interpretación de su signo. | ||
+ | *Interpretación en la nube de puntos. | ||
}} | }} | ||
{{p}} | {{p}} |
Revisión de 08:27 25 jun 2017
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
En el apartado anterior hemos visto de manera intuitiva como puede ser la correlación ente dos variables dependiendo del agrupamiento de los puntos de la nube en torno a una recta. Ahora vamos a ver cómo se puede cuantificar dicha correlación mediante un parámetro que denominaremos coeficiente de correlación.
Consideremos una distribución bidimensional de cuyas variables tenemos
valores observados:

Centro de gravedad de una distribución bidimensional
Llamaremos centro de gravedad de la distribución al punto cuyas coordenadas son las medias de las distribuciones unidimensionales de X e Y:

Covarianza
Se llama covarianza de la distribución al parámetro:


Covarianza correspondiente a una muestra bidimensional:
- Fórmulas para su cálculo.
- Interpretación de su signo.
- Interpretación en la nube de puntos.
Coeficiente de correlación
Llamaremos coeficiente de correlación entre las dos variables al parámetro:

donde σxy es la covarianza y σx,σy son las desviaciones típicas de las distribuciones unidimensionales de X e Y:

Propiedades del coeficiente de correlación
El coeficiente de correlación tiene las siguientes propiedades:
- No tiene dimensiones, es decir, no depende de las unidades en las que vengan dadas las variables.
- Está comprendido entre -1 y 1:
- Cuanto más fuerte sea la correlación más próximo a 1 estará
y cuanto más débil sea la correlación más próximo a 0 estará
.
- Si
la correlación será positiva y si
la correlación será negativa.
Calculadora
Calculadora: Modo Regresión Lineal (REG / Lin) Para calcular los parámetros de distribuciones bidimensionales primero deberemos establecer en la calculadora el modo "Regresión Lineal" mediante la secuencia de teclas: |
Calculadora: Modo básico (COMP) Cuando se desea retornar la calculadora al modo "básico" tras haber trabajado en otro modo (p.e. el modo "Regresión Lineal") deberemos teclear la secuencia: |
Calculadora: Borrado de la memoria estadística (SCL: Statistical Clear) Para trabajar con variables estadísticas bidimensionales primero deberemos borrar los posibles datos estadísticos que hubiese en memoria mediante la secuencia de teclas: |