Combinatoria

De Wikipedia

(Diferencia entre revisiones)
Revisión de 11:50 24 sep 2017
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 11:51 24 sep 2017
Coordinador (Discusión | contribuciones)
(Variaciones)
Ir a siguiente diferencia →
Línea 1: Línea 1:
-=Variaciones= 
-{{Video_enlace_matematicasfaciles 
-|titulo1=Variaciones 
-|duracion=14'15" 
-|sinopsis=Tutorial sobre variaciones con o sin repetición. Ejemplos 
-|url1=https://www.youtube.com/watch?v=9UjgHjby_k8 
-}} 
-==Variaciones con repetición== 
-{{Caja_Amarilla|texto=Se llama '''variaciones con repetición''' de n elementos tomados de k en k (n ≥ k), y se representa <math>VR_n^k\;</math>, o bien <math>VR_{n,k}\;</math>, a las distintas agrupaciones ordenadas de n elementos que se pueden formar a partir de m elementos dados en las que se pueden repetir los elementos. 
-}} 
-{{p}} 
-{{Teorema|titulo=Proposición|enunciado=El número de variaciones con repetición de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula: 
-<center><math>VR_{n,k}=n^k\;</math></center> 
-|demo= 
-'''Demostración:''' 
-Si quiero formar grupos de n elementos en los que importa el orden, el primer elemento del grupo lo puedo escoger de n maneras distintas (puesto que dispongo de n elementos), el 2º también de n maneras (pues puedo repetirlo), el 3º también de n maneras, ..., y el k-ésimo, de n maneras distintas. Multiplicando todas las posibilidades obtengo la fórmula. 
-}} 
-{{p}} 
-{{Videotutoriales|titulo=Variaciones con repetición|enunciado= 
-{{Video_enlace_matematicasfaciles 
-|titulo1=Tutorial 
-|duracion=13'06" 
-|sinopsis=Variaciones con repetición. Ejemplos. 
-|url1=https://www.youtube.com/watch?v=4PyuzzmaBYA 
-}} 
----- 
-{{Video_enlace_childtopia 
-|titulo1=Ejercicio 1 
-|duracion=0'44" 
-|sinopsis=Calcula <math>VR_{3,2}\;</math> 
-|url1=https://www.youtube.com/watch?v=vkuD3SUmZXk&list=PL90993E2D459449B0&index=2 
-}} 
-{{Video_enlace_childtopia 
-|titulo1=Ejercicio 2 
-|duracion=0'37" 
-|sinopsis=Calcula <math>VR_{5,2}\;</math> 
-|url1=https://www.youtube.com/watch?v=WgqF8CLnD6Y&list=PL90993E2D459449B0&index=1 
-}} 
----- 
-{{Video_enlace_childtopia 
-|titulo1=Problema 1 
-|duracion=1'15" 
-|sinopsis=¿Cuántos números de dos cifras pueden formarse con los dígitos 1, 2 y 3, si se pueden repetir las cifras 
-|url1=https://www.youtube.com/watch?v=ee6ZGKj2uY0&index=4&list=PLCCECEF49C3624949 
-}} 
-{{Video_enlace_childtopia 
-|titulo1=Problema 2 
-|duracion=3'39" 
-|sinopsis=Con las cifras 0, 1, 3, 5 y 7, ¿cuántos números de 4 cifras podemos escribir? 
-|url1=https://www.youtube.com/watch?v=L3snBZiTjT4&list=PLCCECEF49C3624949&index=3 
-}} 
- 
-}} 
-{{p}} 
- 
-==Variaciones ordinarias== 
-{{Caja_Amarilla|texto=Se llama '''variaciones ordinarias''' (o sin repetición) de n elementos tomados de k en k (n ≥ k), y se representa <math>V_n^k\;</math>, o bien <math>V_{n,k}\;</math>, a las distintas agrupaciones ordenadas de n elementos que se pueden formar a partir de m elementos dados en las que no se pueden repetir los elementos. 
-}} 
-{{p}} 
-{{Teorema|titulo=Proposición|enunciado=El número de variaciones ordinarias de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula: 
- 
-<center><math>V_{n,k}=\cfrac{n!}{(n-k)!}=n(n-1)(n-2)(n-3) \cdots (n-k+1)</math></center> 
-|demo= 
-'''Demostración:''' 
- 
-Si quiero formar grupos de n elementos en los que importa el orden, el primer elemento del grupo lo puedo escoger de n maneras distintas (puesto que dispongo de n elementos), el 2º de (n-1) maneras distintas (pues no puedo repetir el anterior), el 3º de (n-2), ..., y el k-ésimo, de (n-k+1) maneras distintas. Multiplicando todas las posibilidades obtengo la fórmula. 
-}} 
-{{p}} 
-{{Videotutoriales|titulo=Variaciones ordinarias|enunciado= 
-{{Video_enlace_matematicasfaciles 
-|titulo1=Tutorial 
-|duracion=14'57" 
-|sinopsis=Variaciones ordinarias (sin repetición). Ejemplos 
-|url1=https://www.youtube.com/watch?v=kjvXH-ZFnu0 
-}} 
----- 
-{{Video_enlace_childtopia 
-|titulo1=Ejercicio 1 
-|duracion=1'12" 
-|sinopsis=Calcula <math>V_{6,2}\;</math> 
-|url1=https://www.youtube.com/watch?v=Qhl9WmXctOk&index=4&list=PL90993E2D459449B0 
-}} 
-{{Video_enlace_childtopia 
-|titulo1=Ejercicio 2 
-|duracion=1'26" 
-|sinopsis=Calcula <math>V_{9,4}\;</math> 
-|url1=https://www.youtube.com/watch?v=EW1SpNadaqg&index=3&list=PL90993E2D459449B0 
-}} 
----- 
-{{Video_enlace_childtopia 
-|titulo1=Problema 1 
-|duracion=1'15" 
-|sinopsis=¿Cuántos números de dos cifras pueden formarse con los dígitos 1, 2 y 3, si no se pueden repetir las cifras. 
-|url1=https://www.youtube.com/watch?v=Z_fUpgI8bLQ&list=PLCCECEF49C3624949&index=5 
-}} 
-{{Video_enlace_childtopia 
-|titulo1=Problema 2 
-|duracion=4'24" 
-|sinopsis=Cuántos números de tres cifras no repetidas se pueden formar con los dígitos 2, 3, 4, 5 y 6? ¿Cuántos son pares?¿Cuántos terminan en 45? 
-|url1=https://www.youtube.com/watch?v=VSJqiK6RsY0&index=1&list=PLCCECEF49C3624949 
-}} 
-{{Video_enlace_childtopia 
-|titulo1=Problema 3 
-|duracion=1'53" 
-|sinopsis=En una competición participan 6 corredores pero sólo hay 3 premios distintos (1º, 2º y 3º). ¿De cuántas formas distintas pueden asignarse 3 los premios entre los 6 atletas? 
-|url1=https://www.youtube.com/watch?v=EdJxM3C3juM&list=PLCCECEF49C3624949&index=2 
-}} 
-}} 
-{{p}} 
=Permutaciones= =Permutaciones=
{{Video_enlace {{Video_enlace

Revisión de 11:51 24 sep 2017


Tabla de contenidos

Permutaciones

Permutaciones ordinarias

Se llama permutaciones ordinarias (o sin repetición) de n elementos, y se representa P_n\;, a las distintas agrupaciones de n elementos ordenadas obtenidas a partir de esos n elementos.

ejercicio

Proposición


El número de permutaciones de n elementos se pueden calcular con la siguiente fórmula:

P_n=n!\;

Permutaciones con repetición

Se llama permutaciones con repetición de n elementos, donde el primer elemento se repite "a" veces , el segundo "b" veces , el tercero "c" veces, ..., con n=a+b+c+..., y se representa PR_n^{a,b,c,...}\;, a las distintas agrupaciones ordenadas de n elementos formadas con esos n elementos, teniendo en cuenta que los elementos repetidos son indistinguibles.

ejercicio

Proposición


El número de permutaciones con repetición de n elementos, donde el primer elemento se repite "a" veces , el segundo "b" veces , el tercero "c" veces, ..., con n=a+b+c+..., se pueden calcular con la siguiente fórmula:

PR_n^{a,b,c,...}=\cfrac{n!}{a!b!c!...}\;

Combinaciones

Combinaciones ordinarias

Se llaman combinaciones ordinarias (o sin repetición) de n elementos tomados de k en k (n ≥ k), y lo representaremos por C^k_n \, o C_{n,k} \,, a los distintos subconjuntos de k elementos que pueden formarse con los n elementos dados. Nótese que al tratarse de subconjuntos no importa el orden y no pueden repetirse los elementos.

ejercicio

Proposición


El número de combinaciones de n elementos tomados de k en k (n ≥ k) puede calcularse con la siguiente fórmula:

C^k_n = {n\choose k} = \frac{n!}{k! (n-k)!}

Ver: Números combinatorios

Combinaciones con repetición

Se llaman combinaciones con repetición de n elementos tomados de k en k, y lo representaremos por CR^k_n \, o CR_{n,k} \,, a las distintas agrupaciones de k elementos que pueden formarse con los n elementos dados, de manera que pueden repetirse los elementos y no importa el orden de los mismos.


Nota: n no tiene por qué ser mayor o igual que k.

ejercicio

Proposición


El número de combinaciones con repetición de n elementos tomados de k en k (n ≥ k) puede calcularse con la siguiente fórmula:

CR^k_n = {n+k-1\choose k} = \frac{(n+k-1)!}{k! (n-1)!}


Ejercicios y Problemas



Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda