Plantilla:Uso de letras en lugar de números
De Wikipedia
Muchas veces, las Matemáticas requieren trabajar con números cuyo valor es desconocido o variable. En tales casos, los números se representan mediante letras y se operan con ellas utilizando las mismas reglas que cuando trabajamos con números. Estamos traduciendo al "lenguaje de las Matemáticas".
Llamaremos lenguaje algebraico al conjunto de símbolos (números, letras, símbolos de operación) y reglas que se utilizan para la transmisión de ideas matemáticas. De su estudio se encarga la parte de las matemáticas denominada álgebra.
Cómo se traduce al lenguaje algebraico
Al pasar del lenguaje convencional al lenguaje algebraico, debemos tener en cuenta algunas cosas:
- Los elementos desconocidos o aquellos que no tienen un valor fijo (variables) se representan mediante letras, mientras que aquellos que tienen su valor completamente determinado (constantes) se expresan con números.
- Si un enunciado habla de dos números que pueden ser diferentes, es necesario usar una letra distinta para cada uno. Cuando una letra aparece repetida en un mismo enunciado, se entiende que son varias referencias a un mismo número.
- Las relaciones entre números y variables se expresan mediante operaciones matemáticas.
¿Qué es una variable?
¿Por qué no usamos el signo de multiplicación al escribir variables?
Veamos algunas situaciones en la que resulta conveniente recurrir al lenguaje algebraico:
- Expresión de propiedades o reglas
Por ejemplo, la propiedad conmutativa del producto de dos números dice que "el orden de los factores no altera el producto". Ésto lo podemos expresar usando letras, de la siguiente manera:
La regla de la división dice que "el dividendo es igual al divisor por el cociente más el resto". Ésto lo podemos expresar usando letras, de la siguiente manera:
- Expresión de fórmulas
Por ejemplo, la fórmula del área del triángulo dice que "el área de un triángulo es igual a la base por la altura partido por 2", que podemos expresar con letras:
- Generalización de relaciones numéricas
Si consideramos la siguiente sucesión numérica
la expresión sirve para generalizar sus términos, de manera que, si yo quiero obtener el término que ocupa el séptimo lugar, tan solo tendré que sustituir la letra por el número 7,
- Expresión de números desconocidos y planteamiento de ecuaciones
Por ejemplo, "la suma de dos números consecutivos es igual a 21" lo podemos expresar
donde estamos utilizando la letra para representar al primer número y la expresión para representar al segundo número.
Ejercicio resuelto: Traducir al lenguaje algebraico
Traduce al lenguaje algebraico las siguientes expresiones del lenguaje habitual:
- a) El doble de un número menos cuatro unidades.
- b) La mitad de sumarle 5 al triple de un número.
- c) El perímetro y el área de un terreno rectangular.
a) Si llamamos al número, entonces el doble del número menos cuatro unidades es .
b) Llamando al número, la mitad de sumarle 5 al triple de dicho número es
c) Si suponemos que el terreno rectangular mide de largo e de ancho, tenemos:
- Perimetro:
- Area:
Paso de lenguaje habitual a lenguaje algebraico y viceversa.
Vamos a ver la diferencia entre el lenguaje aritmético y el lenguaje algebraico
Como se traducen expresiones del lenguaje cotidiano al lenguaje algebraico y su uso en el planteamiento de ecuaciones.
Como se traducen expresiones del lenguaje cotidiano al lenguaje algebraico.
Como se traducen expresiones del lenguaje cotidiano al lenguaje algebraico.
Letras en lugar de números. El lenguaje algebraico es la base que te permitirá plantear ecuaciones para resolver problemas.
Como se traducen expresiones del lenguaje cotidiano al lenguaje algebraico y su uso en el planteamiento de ecuaciones.
Ejercicio 1 (3'43") Sinopsis: Ejemplos de cómo escribir expresiones básicas con variables. Ejercicio 2 (1'39") Sinopsis: Ejemplos de cómo escribir expresiones con variables. Ejercicio 3 (2'47") Sinopsis: Ejemplos de cómo escribir expresiones con variables y paréntesis. Ejercicio 4a (11'29") Sinopsis: Expresa en lenguaje algebraico:
Ejercicio 4b (11'47") Sinopsis: Expresa en lenguaje algebraico:
Ejercicio 5 (1'24") Sinopsis: Escribe en lenguaje algebraico: La mitad de un número más el cuadrado del mismo. Ejercicio 6 (1'24") Sinopsis: Escribe en lenguaje algebraico: Un número más seis, menos 15, es igual al cuadrado de otro número. Ejercicio 7 (2'02") Sinopsis: Escribe en lenguaje algebraico: La octava parte de un número es igual a un tercio de la suma de otros dos. Ejercicio 8 (12'02") Sinopsis: Traduce al lenguaje algebraico los siguientes enunciados:
Ejercicio 9 (1'29") Sinopsis: Escribe en lenguaje algebraico: Pablo tenía "x" dólares, cobró "m" dólares y le regalaron "z" dólares.¿Cuánto tiene Pablo? Ejercicio 10 (1'08") Sinopsis: Escribe en lenguaje algebraico: Se compraron (m-1) vacas por 2000 dólares.¿Cuál es el precio de cada vaca? Ejercicio 11 (1'30") Sinopsis: Escribe en lenguaje algebraico: Compré "n" sombreros por "x" dólares. ¿A cómo habría salido cada sombrero si hubiera comprado 2 sombreros menos por el mismo precio? | Ejercicio 12 (1'39") Sinopsis: Escribe en lenguaje algebraico: Tenía "x" dólares y me pagaron "n". Si el dinero que tengo lo empleo todo en comprar (m-1) libros, ¿a cómo sale cada libro? Ejercicio 13 (2'37") Sinopsis: Escribe en lenguaje algebraico: José tiene "n" dólares; Juan tiene la tercera parte de la de José; Ana la cuarta parte del duplo de lo de José. la suma de lo que tienen los tres es menor que 3000 dólares. ¿Cuánto falta a esta suma para ser igual a 3000 dólares? Ejercicio 14 (2'21") Sinopsis: Escribe en lenguaje algebraico: La suma de tres números pares consecutivos es igual al triple del menor, más las tres cuartas partes del mayor. Ejercicio 15 (1'42") Sinopsis: Escribe en lenguaje algebraico: ¿Cuál es el largo de un rectángulo, si se sabe que el largo es tres veces su ancho? Ejercicio 16 (1'27") Sinopsis: Escribe en lenguaje algebraico: El doble de un número equivale al triple de su antecesor excedido en siete. Ejercicio 17 (1'10") Sinopsis: Escribe en lenguaje algebraico: El cuadrado de la suma de dos números es igual a 49. Ejercicio 18 (1'48") Sinopsis: Escribe en lenguaje algebraico: Las dos terceras partes de un número, más el triple de su consecutivo, menos su inverso equivale a 10. Ejercicio 19 (6'06") Sinopsis: Ejemplos de problemas verbales sobre escritura de expresiones básicas. Ejercicio 20 (8'02") Sinopsis: Ejemplos de problemas verbales sobre escritura de expresiones. Ejercicio 21 (1'43") Sinopsis: Escribe un enunciado para la siguiente expresión algebraica: Ejercicio 22 (1'17") Sinopsis: Escribe un enunciado para la siguiente expresión algebraica: Ejercicio 23 (6'45") Sinopsis: Sean "x", "y" y "z" números enteros:
|
Aprende a manejar expresiones algebraicas
Actividades en la que aprenderás y practicarás la traducción de enunciados al lenguaje algebraico.
Actividades en la que aprenderás y practicarás la traducción de enunciados al lenguaje algebraico.
Actividades en la que aprenderás y practicarás la traducción de enunciados al lenguaje algebraico.
Cómo escribir expresiones básicas con variables.
Cómo escribir expresiones con variables.
Problemas verbales sobre escritura de expresiones básicas.
Cómo escribir expresiones básicas con variables
Cómo escribir expresiones con variables
Problemas verbales sobre escritura de expresiones básicas.
Problemas verbales sobre escritura de expresiones.
Ejercicios de autoevaluación sobre cómo se traducen enunciados al lenguaje algebraico.
Ejercicios de autoevaluación sobre cómo se traducen enunciados al lenguaje algebraico.
Ejercicios de autoevaluación sobre cómo se traducen enunciados al lenguaje algebraico.
Ejercicios de autoevaluación sobre cómo se traducen enunciados al lenguaje algebraico.
Ejercicios de autoevaluación sobre cómo se traducen enunciados al lenguaje algebraico.