Regla de Ruffini (4ºESO Académicas)
De Wikipedia
Enlaces internos | Para repasar | Enlaces externos |
Indice Descartes Manual Casio | Test de Álgebra | WIRIS Calculadora |
Tabla de contenidos |
Cociente de monomios
Entenderemos la división de monomios como una fracción que hay que simplificar, dividiendo los coeficientes y restando los exponentes de las potencias de la misma base.
|
División de polinomios
La división polinómica es, en ciertos aspectos, similar a la división numérica.
Dados dos polinomios (dividendo) y (divisor) de modo que el grado de sea mayor o igual que el grado de y el grado de sea mayor o igual a cero, siempre podremos hallar dos polinomios (cociente) y (resto) tales que:
que también podemos representar como:
- El grado de es igual a la diferencia entre los grados de y , mientras que el grado de será, como máximo, un grado menor que .
- Cuando el resto sea igual a cero diremos que el dividendo es divisible por el divisor, es decir, que la división es exacta.
División de polinomios. Ejemplos.
Siendo P(x) un polinomio de grado no inferior al polinomio Q(x), nos planteamos determinar los polinomios C(x) y R(x) tales que P(x) = Q(x).C(x) + R(x). De C(x) se dice "cociente" de la "división" entre P(x) y Q(x); de R(x) se dice "resto". Si R(x) = 0, la división se dice "exacta"; en tal caso, también se dice que P(x) es "divisible" por Q(x), o que P(x) es "múltiplo" de Q(x), o que Q(x) "divide" a P(x), o que Q(x) es "divisor" de P(x).
Cómo se hace la división de polinomios
División de polinomios
Calcula:
a)
b)
Calcula:
Calcula:
Calcula:
Calcula:
a)
b)
Calcula:
Divide los siguientes polinomios entre binomios:
- 1a)
- 1b)
- 1c)
Divide los siguientes polinomios:
- 2a)
- 2b)
- 2c)
- 2d)
- 2e)
Divide los siguientes polinomios:
- 3a)
- 3b)
Divide los siguientes polinomios:
- 3c)
- 3d)
Divide los siguientes polinomios:
- 4a)
- 4b)
- 4c)
- 4d)
Divide los siguientes polinomios:
- 5a)
- 5b)
- 5c)
- 5d)
Divide los siguientes polinomios:
- 6a)
- 6b)
- 6c)
- 6d)
Indica qué divisiones de polinomios son exactas:
- 7a)
- 7b)
- 7c)
- 7d)
Divide los siguientes polinomios:
- 8a)
- 8b)
- 9a)
- 9b)
- 9c)
Divide los siguientes polinomios:
- 9d)
- 9e)
- 9f)
- 9g)
- 9h)
- 9i)
- 9j)
Divide los siguientes polinomios:
- a)
- b)
Método de Horner para la división de polinomios
Calcula:
Halla el resto de la división:
Halla el resto de la división
sabiendo que la suma de los coeficientes del cociente es 28.
Ejercicios de autoevaluación sobre división de polinomios.
División de un polinomio por (x-a). Regla de Ruffini
Regla de Ruffini
La Regla de Ruffini es un procedimiento que nos permite dividir un polinomio entre un binomio de la forma .
Debemos esta regla al matemático italiano Paolo Ruffini,
Procedimiento:
Vamos a dividir el polinomio
entre el binomio
para obtener el cociente
y el resto .
1. Trazamos dos líneas a manera de ejes. Cogemos los coeficientes de y los escribimos ordenados. Entonces escribimos en la parte inferior izquierda del eje, encima de la línea:
2. Pasamos el coeficiente más pegado a la izquierda, , justo debajo de la línea, para obtener el primero de los coeficientes :
3. Multiplicamos el número más pegado a la derecha debajo de la línea por y lo escribimos sobre la línea en la primera posición de la derecha:
4. Añadimos los dos valores que hemos puesto en la misma columna:
5. Repetimos los pasos 3 y 4 hasta que no tengamos más números:
Ejemplo: Regla de Ruffini
Divide los polinomios usando la regla de Ruffini:
| 7 -5 -4 6 -1 | 2| 14 18 28 68 --|------------------- | 7 9 14 34 |67 |____ El resultado significa que:
|
|
Regla de Ruffini. Ejemplos.
Regla de Ruffini: Método rápido para realizar divisiones de polinomios entre binomios del tipo (x - a). Ejemplos.
La regla de Ruffini nos permite determinar supersónicamente el cociente y el resto de la división entre un polinomio P(x) y el polinomio Q(x) = x - a.
Cómo se aplica la Regla de Ruffini.
División de polinomios por el método de Ruffini para divisores del tipo (x-a).
Ejemplo de división de polinomios usando la regla de Ruffini.
2 ejemplos de división de polinomios usando la regla de Ruffini.
2 ejemplos de división mediante la regla de Ruffini
Otros 2 ejemplos de aplicación de la regla de Ruffini
Divide entre .
a) Divide entre
b) Divide entre
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 1a)
- 1b)
- 1c)
- 1d)
- 1e)
- 1f)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 1g)
- 1h)
- 1i)
- 1j)
- 1k)
- 1l)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 2a)
- 2b)
- 2c)
- 2d)
- 2e)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 2f)
- 2g)
- 2h)
- 2i)
- 2j)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- a)
- b)
- c)
Ejercicios de autoevaluación sobre la regla de Ruffini.
Videotutoriales
Siendo P(x) un polinomio de grado no inferior al polinomio Q(x), nos planteamos determinar los polinomios C(x) y R(x) tales que P(x) = Q(x).C(x) + R(x). De C(x) se dice "cociente" de la "división" entre P(x) y Q(x); de R(x) se dice "resto". Si R(x) = 0, la división se dice "exacta"; en tal caso, también se dice que P(x) es "divisible" por Q(x), o que P(x) es "múltiplo" de Q(x), o que Q(x) "divide" a P(x), o que Q(x) es "divisor" de P(x).
Videotutorial.
La regla de Ruffini nos permite determinar supersónicamente el cociente y el resto de la división entre un polinomio P(x) y el polinomio Q(x) = x - a.
Videotutorial
Videotutorial