Familias de funciones elementales (1ºBach)
De Wikipedia
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(Pág. 250)
Funciones algebraicas y trascendentes
- Las funciones algebraicas son aquellas en las que las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
- Las funciones trascendentes son aquellas que no son algebraicas.
La función "f" se dice "algebraica" si las operaciones que deben realizarse para determinar el número real "f(x)" son las llamadas algebraicas: suma, resta, multiplicación, división, potenciación de exponente constante y radicación de ínidice constante. Si "f" no es algebraica, se dice "trascendente".
En esta escena podrás ver la representación de algunas funciones elementales.
Funciones lineales
Sean . Se define la función lineal como:
La función lineal Descripción: Representación de la familia de funciones lineales. |
Propiedades de la función lineal
Las funciones lineales cumplen las siguientes propiedades:
- Son continuas en su dominio, que es .
- Su gráfica es una recta que cortan al eje Y en .
- Si son crecientes, si son decrecientes y si son constantes.
Funciones cuadráticas
Sean . Se define la función cuadrática como: La función cuadrática Descripción: Representación de la familia de funciones cuadráticas. Propiedades de la función cuadrática Las funciones lineales cumplen las siguientes propiedades:
|
Funciones irracionales
Sea . Se define la función raíz de índice n como: La función irracional Descripción: Representación de la familia de funciones irracionales. |
Funciones de proporcionalidad inversa
Sea . Las función de proporcionalidad inversa se define como El numero recibe el nombre de constante de proporcionalidad inversa. Este tipo de funciones se llaman así porque si e son cantidades correspondientes de dos magnitudes inversamente proporcionales, con constante de proporcionalidad , entonces sabemos que se cumple que . La función de proporcionalidad inversa Descripción: Representación de la familia de funciones de proporcionalidad inversa. Propiedades de la función de proporcionalidad inversa Las funciones de proporcionalidad inversa cumplen las siguientes propiedades:
|
Una función homográfica es una función racional del tipo:
|
Proposición
Si transformamos una función de proporcionalidad inversa por medio de traslaciones horizontales y verticales, el resultado es una función homográfica.
Si partimos de una función de proporcionalidad inversa:
y sobre ella efectuamos traslaciones verticales y horizontales, nos quedaría:
Desarrollando esta expresión:
que es de tipo homográfico.Representación de la familia de funciones homográficas.
Funciones exponenciales
|
Propiedades de la función exponencial Las funciones exponenciales de base cumplen las siguientes propiedades:
|
Funciones logarítmicas
Sea . Se define la función logarítmica de base como:
|
Propiedades de la función logarítmica Las funciones exponenciales de base cumplen las siguientes propiedades:
|
Funciones trigonométricas
Ver tema: Funciones trigonométricas o circulares
Ejercicios propuestos
Ejercicios propuestos: Concepto de función y de dominio de una función |