Plantilla:Ramas infinitas de las funciones racionales
De Wikipedia
Proposición
Consideremos la función racional en la variable x, ya simplificada:
La función tiene las siguientes ramas infinitas:
- Asíntotas verticales:
- Si es una raíz de Q(x), entonces la recta es una asíntota vertical de .
- Asíntotas horizontales:
- Si , entonces la recta es una asíntota horizontal de , tanto por , como por .
- Si , entonces la recta es una asíntota horizontal de , tanto por , como por .
- Asíntotas oblicuas:
- Si , tienen una asíntota oblicua, tanto por , como por . Dicha asíntota es igual al cociente de la división entre y .
- Ramas parabólicas:
- Si , entonces tiene una rama parabólica, tanto por , como por .
Ejercicio 1 (6'38") Sinopsis:
Estudio de las ramas infinitas de la función .
Ejercicio 2 (4'38") Sinopsis:
Estudio de las ramas infinitas de la función .
Ejercicio 3 (10'44") Sinopsis:
Estudio de las ramas infinitas de la función . (Caso con discontinuidad evitable)
Ejercicios resueltos
Halla todas las ramas infinitas de las siguientes funciones:
- a) b) c)
Solución:
a) A.V.: x=0, x=2; A.H.: y=1
b) A.V.: x=2; A.O.: y=x-3
c) A.V.: x=3; R.I.
Haz uso de la siguiente escena de Geogebra para comprobar las soluciones:
Representador de funciones Descripción:
En esta escena podrás representar funciones definidas en hasta 4 trozos.