Posiciones relativas de dos rectas del plano (1ºBach)
De Wikipedia
Tabla de contenidos[esconder] |
(Pág. 200)
Posición relativa de dos rectas en el plano
Dadas las ecuaciones de dos rectas del plano, éstas pueden ser secantes, paralelas o coincidentes.
Veamos como se averigua dependiendo del tipo de ecuaciones que nos den.
Posición relativa de dos rectas dadas en ecuaciones paramétricas
Procedimiento
Dadas las rectas: y
para hallar su posición relativa igualaremos las incógnitas y resolveremos el siguiente sistema de dos ecuaciones con dos incógnitas, y
:

- Si el sistema es compatible determinado (una solución:
), las dos rectas se cortan en un punto, que se obtiene sustituyendo los parámetros
y
, en las ecuaciones paramétricas.
- Si el sistema es incompatible (no tiene solución), las dos rectas son paralelas.
- Si el sistema es compatible indeterminado (infinitas soluciones) las rectas son coincidentes.
Posición relativa de dos rectas dadas en ecuaciones implícitas
Procedimiento
Dadas las rectas: y
para hallar su posición relativa resolveremos el siguiente sistema de dos ecuaciones con dos incógnitas:, e
:

- Si el sistema es compatible determinado (una solución:
), las dos rectas se cortan en ese punto. (Esto ocurre cuando
).
- Si el sistema es incompatible (no tiene solución), las dos rectas son paralelas. (Esto ocurre cuando
).
- Si el sistema es compatible indeterminado (infinitas soluciones) las rectas son coincidentes. (Esto ocurre cuando
).
Posición relativa de dos rectas dadas en ecuaciones explícitas
Procedimiento
Dadas las rectas: y
para hallar su posición relativa resolveremos el siguiente sistema de dos ecuaciones con dos incógnitas:, e
:

- Si el sistema es compatible determinado (una solución:
), las dos rectas se cortan en ese punto. (Esto ocurre cuando las pendientes son distintas:
).
- Si el sistema es incompatible (no tiene solución), las dos rectas son paralelas. (Esto ocurre cuando
).
- Si el sistema es compatible indeterminado (infinitas soluciones) las rectas son coincidentes. (Esto ocurre cuando
).
Videotutoriales
Ejercicios propuestos
Ejercicios propuestos: Posición relativa de dos rectas en el plano |