Las funciones y sus gráficas (3ºESO Académicas)
De Wikipedia
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadora |
Tabla de contenidos |
(Pág. 146)
Concepto de función
- Una función es una relación entre dos variables (por ejemplo, e ) que a cada valor de le asigna un único valor de .
- La variable se llama variable independiente y la variable se llama variable dependiente, porque su valor depende de .
- Se dice que es función de y lo representamos por . También se dice que es la imagen de mediante la función .
"Un grifo vierte agua en un depósito de 200 litros de capacidad, a razón de 2 litros por segundo, hasta que se llena el depósito, momento en el cual se cierra el grifo."
La relación entre el tiempo (t) que el grifo está abierto y el volumen (V) de agua que hay en el depósito es una función.
El volumen es función del tiempo:
- La variable independiente (t) es el "tiempo que está abierto el grifo".
- La variable dependiente (V) es el "volumen de agua que se ha llenado el depósito".
En los siguientes videos se explican los conceptos básicos sobre funciones que trataremos a lo largo de este tema.
Tutorial en el que se explican los conceptos básicos sobre funciones: variable independiente, dependiente, imagen, preimagen, dominio, recorrido... necesarios para poder comprender la terminología que se emplea en el análisis matemático.
- Definición de función.
- Dominio e imagen (o rango).
- Distintas formas de representar una función.
- Ejercicios resueltos.
Formas de expresar una función
Hay varias formas de expresar una función:
- Mediante un enunciado que explique la relación que existe entre las variables.
- Mediante una ecuación que relacione las variables.
- Mediante una tabla que contenga los valores de las variables, emparejados.
- Mediante una gráfica, representada en unos ejes cartesianos con una escala adecuada. Sobre el eje horizontal (eje de abscisas) representamos la variable independiente x, y sobre el eje vertical (eje de ordenadas) la variable dependiente . Cada punto de la gráfica es generado por una pareja de valores e , que son sus coordenadas , su abcisa y su ordenada.
Consideremos, de nuevo, el ejemplo del grifo y el depósito:
1. Enunciado:
- "Un grifo vierte agua en un depósito de 200 litros de capacidad, a razón de 2 litros por segundo, hasta que se llena el depósito, momento en el cual se cierra el grifo."
2. Ecuación:
- t = "Tiempo que está abierto el grifo" (en segundos).
- V = "Volumen de agua que se ha llenado el depósito" (en litros).
3. Tabla de valores:
Tiempo (s) |
0 | 1 | 5 | 20 | 50 | 75 | 100 |
Volumen (l) |
0 | 2 | 10 | 40 | 100 | 150 | 200 |
4. Gráfica:
Plantilla:AI: Formas de expresar una función
En la actividad anterior hemos podido ver que:
La variable independiente puede ser:
- Discreta: Si entre dos valores de la variable hay solo un número finito de valores que puede tomar. Su gráfica está formada por puntos separados.
- Continua: Si entre dos valores de la variable hay infinitos valores que puede tomar. Su gráfica está formada por trazos.
Actividad: Tabla de valores de una función En las actividades anteriores hemos trabajado con la función y=0.30x:
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|
Función que relaciona el tiempo que lleva abierto un grifo y la altura que alcanza el nivel del agua en un depósito cilíndrico.
La siguiente escena representa una botella (en color rojo) que cuando abras el grifo se comenzará a llenar de agua. El proceso de llenado de la botella se puede describir matemáticamente con lo que llamamos función, así para un tiempo concreto la función nos dice la altura de la botella en ese momento. El dibujo que queda tras el punto A se llama gráfica de la función.
Haz clic en el botón y dejándolo pulsado observa cómo se llena la botella .
Observa que en el eje horizontal representamos el tiempo que dejamos el grifo abierto y en el vertical la altura que el agua alcanza en la botella. En el eje horizontal hemos empezado a marcar 1 segundo, 2 segundos, etc.
Observa en este ejemplo, que la altura es cero cuando el tiempo transcurrido es cero y que la gráfica va creciendo.
- a) Observa las alturas que se alcanzan cuando han transcurrido 2, 4 y 6 segundos. Anótalas.
Si haces clic sobre un punto con el cursor te aparecerán los valores horizontal (tiempo) y vertical (altura) para ese punto.
- b) ¿Qué puedes decir de la relación entre las variables tiempo y altura?
- c) ¿Cuánto tiempo necesita la botella para llenarse hasta la mitad?
- d) ¿Cuánto tiempo necesita la botella para llenarse un cuarto? ¿Y tres cuartos?
Función que relaciona el tiempo que lleva abierto un grifo y la altura que alcanza el nivel del agua en un depósito de forma cónica.
En la siguiente escena la forma de la botella ha cambiado.
- a) Intenta hacer la gráfica antes de ver como queda en la escena.
- b) Observa las alturas que se alcanzan cuando han transcurrido 2, 4 y 6 segundos. Anótalas.
- c) ¿Qué puedes decir de la relación entre las alturas y los tiempos?
- d) Ahora la altura del agua según pasa el tiempo sube más despacio, ¿por qué?
Ahora prueba a cambiar la forma de la botella moviendo el punto P.
- e) Haz una botella con la boca más estrecha que la base y observa las distintas gráficas que se generan. Da una explicación de lo qué ocurre.
- f) Las gráficas unas veces son convexas (tipo U) y otras cóncavas (tipo U invertida), ¿de qué depende?
Evalúa funciones a partir de su gráfica.
Evalúa expresiones con funciones.
Las gráficas de contenido matemático se han convertido en el lenguaje más universal de finales del siglo XX. En cualquier medio de comunicación cada vez que se quiere dar información cuantitativa de un proceso aparece una gráfica matemática. Sus ventajas son incuestionables, son capaces de ofrecer gran cantidad de información de un simple vistazo. Constituyen un instrumento imprescindible en campos tan dispares como la medicina, la economía, la física, la biología y hasta en el deporte. En este programa investigaremos su origen relativamente reciente, tienen poco más de 200 años de existencia, y sus distintas aplicaciones y daremos algunos consejos para interpretar de forma crítica la información presentada en forma de gráficas.
Ejercicios propuestos
Ejercicios propuestos: Las funciones y sus gráficas |