Plantilla:Ecuación de la recta que pasa por dos puntos

De Wikipedia

Revisión de fecha 14:10 9 nov 2016; Ver revisión actual
← Revisión anterior | Revisión siguiente →

Dos puntos determinan una única recta que pasa por ellos. Veamos como se obtiene su ecuación:

ejercicio

Procedimiento


Sean A(x_1,\ y_1) y B(x_2,\ y_2) dos puntos de una recta. Para hallar su ecuación procederemos como sigue:

  1. Con los dos punto hallaremos la pendiente: m=\cfrac {\Delta y}{\Delta x}=\cfrac {y_2-y_1}{x_2-x_1}
  2. A continuación podemos seguir dos caminos:
a) Usar la ecuación punto-pendiente: con uno cualquiera de los dos puntos y con la pendiente que acabamos de calcular.
b) Usar la ecuación explícita, y=mx+n\;: sustituyendo las coordenadas de uno de los dos puntos y el valor de la pendiente, despejaremos el valor de n\;.

ejercicio

Ejemplo: Ecuación de la recta que pasa por dos puntos


Halla la ecuación de la recta que pasa por los puntos (2, 4) y (-3, 5).

ejercicio

Actividades Interactivas: Ecuación de la recta que pasa por dos puntos


1. Ecuación punto-pendiente de la recta que pasa por dos puntos.
2. Ecuaciones continua y general de la recta que pasa por dos puntos.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda