Sistemas de numeración (1º ESO)
De Wikipedia
Tabla de contenidos[esconder] |
(Pág. 8)
Sistemas de numeración
Los números surgen de la necesidad de contar. Por ejemplo, el hombre primitivo, para contar los animales de su rebaño, hacia uso de semillas o guijarros; muescas en palos, huesos o piedras; etc.
En numerosas civilizaciones el hombre uso su cuerpo, dándole a sus partes (manos, pies, falanges, ...) valores numéricos. A medida que la sociedad fue evolucionando, surgió la necesidad de contar cantidades más grandes, para lo que hubo que inventar nuevos símbolos. Los símbolos utilizados para representar los números y sus normas de uso forman un sistema de numeración. |
Tipos de sistemas de numeración
Podemos distinguir dos tipos de sistemas de numeración: aditivos y posicionales.
Algunos sistemas de numeración son mixtos, es decir, tienen algo de aditivos y algo de posicionales. (Ej. sist. num. romano y maya). |
El sistema de numeración decimal
Es nuestro sistema de numeración, nacido en la India en el siglo V y que llegó a Europa por medio de los árabes.
- El sistema de numeración decimal es un sistema de numeración posicional que utiliza 10 símbolos o cifras: 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9.
- Al ser un sistema de numeración posicional cada cifra, dependiendo del lugar que ocupe, tiene un valor. Así tenemos diferentes órdenes o categorías de unidades: unidades, decenas, centenas,...
- En este sistema, diez unidades de un orden cualquiera hacen una unidad del orden inmediato superior:
- 1 decena = 10 unidades
- 1 centena = 10 decenas = 100 unidades
- 1 unidad de millar = 10 centenas = 1000 unidades
- 1 decena de millar = 10 unidades de millar = 10,000 unidades
- 1 centena de millar = 10 decenas de millar = 100,000 unidades
- 1 unidad de millón = 10 centenas de millar = 1,000,000 unidades
- 1 decena de millón = 10 unidades de millón = 10,000,000 unidades
- etc.
Lectura y escritura de números naturales
Notación desarrollada de un número
La notación desarrollada de un número consiste en expresarlo como suma de los valores relativos de cada uno de sus dígitos.
Ejercicios propuestos
Ejercicios propuestos: Sistemas de numeración |