Plantilla:Triángulos semejantes

De Wikipedia

Se dice que dos figuras geométricas, y en particular dos triángulos, son semejantes si tienen la misma forma aunque sus tamaños u orientación sean diferentes.

Matemáticamente, la semejanza de triángulos la podemos expresar de la siguiente manera:

  • Dos triángulos, ABC\; y A'B'C'\;, son semejantes, y lo notaremos ABC \sim A'B'C'\;, si cumplen las dos condiciones siguientes:

1. Los ángulos correspondientes u homólogos* son iguales:
\widehat{A}=\widehat{A}'\, ,\ \widehat{B}=\widehat{B}'\, ,\ \widehat{C}=\widehat{C}'
2. Los lados correspondientes u homólogos son proporcionales:
\cfrac{c'}{c} = \cfrac {b'}{b} = \cfrac{a'}{a}=r

  • Al valor r\;\! se le llama razón de semejanza.


(*) Dos elementos de dos figuras son homólogos si ocupan el mismo lugar en ambas figuras.


Nota: Cuando veamos los criterios de semejanza de triángulos, veremos que para que dos triángulos sean semejantes bastará con que se cumpla una de las dos condiciones: que los lados homólogos sean proporcionales o que los ángulos homólogos sean iguales. En tal caso, la otra condición se cumplirá automáticamente.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda