Plantilla:Area sector circular
De Wikipedia
← Revisión anterior | Revisión siguiente →
La fórmula del área del sector circular se obtiene a partir de la del área del círculo, aplicando una regla de tres.

Despejando el área del sector:

de donde, sustituyendo el área del círculo por su valor,  , se obtiene la fórmula.
, se obtiene la fórmula.
Lo mismo ocurre con la de la longitud del arco, que se obtiene a partir de la de la longitud de la circunferencia, también mediante una regla de tres.

Despejando la longitud del sector:

de donde, sustituyendo la longitud de la circunferencia por su valor,  , se obtiene la fórmula.
, se obtiene la fórmula.
 Tutorial (4´37")     Sinopsis:
 Tutorial (4´37")     Sinopsis: Obtención del área de un sector circular. Ejemplo
 Ejercicios 1 (11'37")     Sinopsis:
 Ejercicios 1 (11'37")     Sinopsis: Fórmula que permite calcular el área de un sector circular a partir del valor del ángulo central. Ejercicios. (Nivel 1)
 Ejercicios 2 (14'11")     Sinopsis:
 Ejercicios 2 (14'11")     Sinopsis: Fórmula que permite calcular el área de un sector circular a partir del valor del ángulo central. Ejercicios. (Nivel 2)
 Ejercicio 3 (11'39")     Sinopsis:
 Ejercicio 3 (11'39")     Sinopsis: Fórmula que permite calcular la longitud de un arco de circunferencia a partir del valor del ángulo central. Ejercicios. (Nivel 3)
 Ejercicio 4 (7´49")     Sinopsis:
 Ejercicio 4 (7´49")     Sinopsis:  Ejercicios 1 (16'15")     Sinopsis:
 Ejercicios 1 (16'15")     Sinopsis: Fórmula que permite calcular la longitud de un arco de circunferencia a partir del valor del ángulo central. Ejercicios. (Nivel 1)
 Ejercicios 2 (20'42")     Sinopsis:
 Ejercicios 2 (20'42")     Sinopsis: 2 ejercicios que hacen uso de la fórmula de la longitud de un arco de circunferencia. (Nivel 2)
 Ejercicios 3 (14'19")     Sinopsis:
 Ejercicios 3 (14'19")     Sinopsis: 2 ejercicios que hacen uso de la fórmula de la longitud de un arco de circunferencia. (Nivel 3)
 Área del trapecio circular (7'06")     Sinopsis:
 Área del trapecio circular (7'06")     Sinopsis:Deducción de la fórmula del área del trapecio circular. Ejemplo.
 Área del sector circular y longitud de su arco     Descripción:
   Área del sector circular y longitud de su arco     Descripción: En esta escena podrás hallar el área del sector circular y la longitud del arco de circunferencia correspondiente.
| Actividad: El sector circular 
 Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: 
 | 

 
 
 
 : radio.
: radio.
 : arco.
: arco.
 : ángulo (en grados sexagesimales).
: ángulo (en grados sexagesimales).
 : ángulo
: ángulo  (en radianes).
 (en radianes).
 : número Pi = 3,14159...
: número Pi = 3,14159...





