Funciones: Crecimiento. Variación. Máximos y mínimos

De Wikipedia

Revisión de fecha 10:59 6 dic 2017; Ver revisión actual
← Revisión anterior | Revisión siguiente →

Crecimiento y variación

  • Una función es creciente en un intervalo I cuando al aumentar la variable independiente x\; en ese intervalo, aumenta la variable dependiente y\;.
\forall x_1,x_2 \in I, x_1<x_2 \Rightarrow f(x_1)<f(x_2)
  • Una función es decreciente en un intervalo cuando al aumentar la variable independiente x\; en ese intervalo, disminuye la variable dependiente y\;.
\forall x_1,x_2 \in I, x_1<x_2 \Rightarrow f(x_1)>f(x_2)
  • Una función es constante en un intervalo cuando al aumentar la variable independiente x\; en ese intervalo, la variable dependiente y\; no varía, siempre toma un mismo valor k\;.
f(x)=k \ , \forall x \in I

Se llama variación de una función f\; en un intervalo [a,b]\;, a lo que varía la variable dependiente de un extremo a otro del intervalo:

\Delta f_{[a,b]}=f(b)-f(a)\;

Máximos y mínimos

  • Una función y = f(x)\; tiene un máximo relativo en un punto (x_o,y_o)\; cuando y_o\; es mayor que los valores que toma la variable y\; en un intervalo entorno al punto.
  • Una función y = f(x)\; tiene un mínimo relativo en un punto (x_o,y_o)\; cuando y_o\; es menor que los valores que toma la variable y\; en un intervalo entorno al punto.

Ejercicios

ejercicio

Ejercicios resueltos: Crecimiento. Máximos y mínimos


1. En la siguiente función, indica los intervalos de crecimiento y decrecimiento, así como los máximos y mínimos relativos.

Imagen:funcion1d.png
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda