Ecuaciones de la recta
De Wikipedia
Tabla de contenidos[esconder] |
Ecuación explícita de una recta
La ecuación explícita de la recta viene dada por la ya conocida expresión:
|
Ecuación general o implícita de una recta
La ecuación de la recta también la podemos expresar con todos los términos en lado izquierdo de la ecuación, igualados a cero. Es lo que se denomina:Ecuación general o implícita de la recta:
|
Ecuación punto-pendiente de una recta
Una recta queda perfectamente determinada por su inclinación y por un punto contenido en ella. Esto nos permite dar el siguiente resultado:
Ecuación punto-pendiente
Sea un punto de una recta y m su pendiente, entonces su ecuación viene dada por:
|
expresión que se denomina ecuación punto-pendiente de la recta.
Ejemplo: Ecuación punto-pendiente
- Halla la ecuación punto-pendiente de la recta que pasa por el punto (-2, 4) y tiene pendiente 3.
Actividad Interactiva: Ecuación punto-pendiente
1. Halla la ecuación de la recta conocida la pendiente y un punto.
|
Ecuación de la recta que pasa por dos puntos
Como dos puntos terminan una única recta que pasa por ellos, podemos dar el siguiente resultado:
Ecuación continua de la recta que pasa por dos puntos
Sean y
dos puntos de una recta (que no sea horizontal *), entonces la ecuación de la recta viene dada por la expresión:
|
Además, su pendiente es:

(* La recta no puede ser horizontal porque si no el primer denominador se anula)
Ejemplo: Ecuación de la recta que pasa por dos puntos
- Halla la ecuación de la recta que pasa por los puntos (2, 4) y (-3, 5).
Actividades Interactivas: Ecuación de la recta que pasa por dos puntos
1. Ecuación punto-pendiente de la recta que pasa por dos puntos.
2. Ecuaciones continua y general de la recta que pasa por dos puntos.
|
Ejercicios
Ejercicios: Ecuaciones de la recta 1. Halla la ecuación de las siguientes rectas:
2. Averigua si los puntos (0,3), (3,1) y (9,-4) están alineados. |