Raices y Radicales (4ºESO-A)

De Wikipedia

Revisión de fecha 19:19 28 may 2008; Ver revisión actual
← Revisión anterior | Revisión siguiente →

Tabla de contenidos

Raíces

Sabemos que 3^2 = 9\;\!. Esta igualdad la podemos expresar de forma similar como \sqrt{9}=3 y se lee "3 es igual a la raíz cuadrada de 9".

En general:

  • Se define la raíz cuadrada de un número a\;\! como otro número b\;\! tal que b^2 =a\;\!.

Y escribimos:

b=\sqrt{a}


  • Se define la raíz cúbica de un número a\;\! como otro número b\;\! tal que b^3 =a\;\!.

Y escribimos:

b=\sqrt[3]{a}


  • Igualmente, se define raíz n-sima de un número a\;\! como otro número b\;\! tal que b^n =a\;\!. (n \in \mathbb{N},\ n>1)

Y escribimos:

b=\sqrt[n]{a}

El número a\;\! se llama radicando, el número n\;\!, índice y b\;\! es la raíz.

Propiedades:

  • \sqrt[n]{1}=1 y \sqrt[n]{0}=0, para cualquier valor del índice n\;\!.
  • Si a>0\;\!, \sqrt[n]{a} existe cualquiera que sea el índice n\;\!.
  • Si a<0\;\!, \sqrt[n]{a} sólo existe si el índice n\;\! es impar.
  • Si el índice n\;\! es par y el radicando a>0\;\!, la raíz tiene dos soluciones: una positiva y otra negativa, pero iguales en valor absoluto. Si el índice es impar, siempre tiene una única solución, que tiene el mismo signo que el radicando a\;\!.

Raíces exactas e inexactas

Se llaman raíces exactas a aquellas que dan como resultado un número racional. En caso contrario diremos que son inexactas y el resultaado será un número irracional.

Para que una raíz sea exacta, al descomponer el radicando en factores primos, las potencias de éstos deben ser todas números divisibles por el índice.

ejercicio

Ejemplo: Raíces exactas e inexactas


Calcula las siguientes raíces cuando sean exactas:

a) \sqrt[3]{216} \quad b) \sqrt[4]{0'0256}\quad c) \sqrt[3]{192}

La raíz como potencia de exponente fraccionario

ejercicio

Proposición


  • Toda raíz se puede expresar como una potencia cuya base es el radicando, a\;\!, y el exponente es \cfrac{1}{n}, siendo n\;\! el índice de la raíz. Ésto es:

\sqrt[n]{a}=a^\frac{1}{n}

  • De forma similar, también se cumple:

\sqrt[n]{a^m}=a^\frac{m}{n}

ejercicio

Ejemplo: La raíz como potencia de exponente fraccionario


Escribe las siguientes potencias de exponente fraccionario en forma de raíces y calcula su valor:
a)\ 16^\frac{3}{4}\quad b)\ 27^\frac{2}{3}\quad c)\ 125^\frac{4}{3}\quad d)\ 100^{-\frac{3}{2}}\quad e)\ 8^{-\frac{2}{3}}

Propiedades: Las potencias con exponente fraccionario tienen las mismas propiedades que con exponente natural o entero.

Calculadora

Raíz cuadrada

Calculadora

Calculadora: Raíz cuadrada


Para calcular raíces cudradas usaremos la tecla Raíz cuadrada.

Raíz cúbica

Calculadora

Calculadora: Raíz cúbica


Para calcular raíces cúbicas usaremos la tecla Raíz cúbica.

Otras raíces

Calculadora

Calculadora: Otras raíces


Para calcular la raíz cuarta, quinta, etc., usaremos la tecla Raíz de índice x.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda