Funciones: Crecimiento, Máximos y Mínimos (4ºESO Académicas)

De Wikipedia

(Pág. 89)

Tabla de contenidos

Crecimiento y variación de una función

  • Una función es creciente en un intervalo I cuando al aumentar la variable independiente x\; en ese intervalo, aumenta la variable dependiente y\;.
\forall x_1,x_2 \in I, x_1<x_2 \Rightarrow f(x_1)<f(x_2)
  • Una función es decreciente en un intervalo cuando al aumentar la variable independiente x\; en ese intervalo, disminuye la variable dependiente y\;.
\forall x_1,x_2 \in I, x_1<x_2 \Rightarrow f(x_1)>f(x_2)
  • Una función es constante en un intervalo cuando al aumentar la variable independiente x\; en ese intervalo, la variable dependiente y\; no varía, siempre toma un mismo valor k\;.
f(x)=k \ , \forall x \in I

Se llama variación de una función f\; en un intervalo [a,b]\;, a lo que varía la variable dependiente de un extremo a otro del intervalo:

\Delta f_{[a,b]}=f(b)-f(a)\;

Extremos relativos de una función

  • Una función y = f(x)\; tiene un máximo relativo en un punto (x_o,y_o)\; cuando y_o\; es mayor que los valores que toma la variable y\; en un intervalo entorno al punto.
  • Una función y = f(x)\; tiene un mínimo relativo en un punto (x_o,y_o)\; cuando y_o\; es menor que los valores que toma la variable y\; en un intervalo entorno al punto.

Actividades y videotutoriales

ejercicio

Ejercicios resueltos: Crecimiento. Máximos y mínimos


1. En la siguiente función, indica los intervalos de crecimiento y decrecimiento, así como los máximos y mínimos relativos.

Imagen:funcion1d.png

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Crecimiento, Máximos y Mínimos


(Pág. 88)

1

Tasa de variación media

Para medir el crecimiento medio de una función en un intervalo [a,b], se utiliza la tasa de variación media (T.V.M.) o tasa de cambio, que se define como el cociente de la variación de y entre la variación de x:

T.V.M._f \,[a,b]=\cfrac{\mathcal{4}y}{\mathcal{4}x}=\cfrac{f(b)-f(a)}{b-a}

Si hacemos b=a+h \quad (h \ne 0), la expresión anterior queda como sigue:

T.V.M._f \,[a,a+h]=\cfrac{\mathcal{4}y}{\mathcal{4}x}=\cfrac{f(a+h)-f(a)}{h}

ejercicio

Proposición


La T.V.M. de una función en un intervalo [a,b]\; es igual a la pendiente de la recta secante a la gráfica de la función en puntos de abcisas a\; y b\;.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Tasa de variación media


(Pág. 89)

2 y 3

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda