Funciones: Dominio e imagen
De Wikipedia
[editar]
Dominio e imagen de una función
- El conjunto de valores de la variable independiente,
, para los que hay un valor de la variable dependiente,
, se llama dominio de definición de la función. Se denota
.
- El conjunto de valores que toma la variable independiente,
, se llama imagen, recorrido o rango de la función. Se denota
.
- Si un punto (x,y) pertenece a la gráfica de la función entonces se dice que y es la imagen de x y también que x es la antiimagen de y.
[editar]
Determinación del dominio de una función
El dominio de una función puede estar determinado o limitado por diferentes razones:
- Imposibilidad de realizar alguna operación con ciertos valores de
(Por ejemplo, si en la expresión analítica aparecen denominadores que se anulan o radicandos que toman valores negativos)
- Contexto en el que se estudia la función (Por ejemplo, una función que relaciona lado y área de una figura plana, el lado no puede tomar valores negativos)
- Por voluntad de quien propone la función (A veces nos puede interesar estudiar sólo un trozo de la función).
Ejemplos: Dominio de una función dada por una expresión analítica
- Halla el dominio de las funciones:
- a)
- a)
- b)
- b)
- c)
- c)
- d)
(Área de un cuadrado de lado
)
- d)
Ejercicio resuelto: Dominio e imagen |