Números irracionales

De Wikipedia

Tabla de contenidos

Números irracionales

A los números cuya expresión decimal tiene infinitas cifras no periódicas, se les llama números irracionales. Al conjunto de tales números lo representaremos con la letra \mathbb{I}.

Son números irracionales: \pi=3.141592654..., \sqrt{2}=1.414213..., e=2.718281...

Vamos a repasar los distintos conjuntos numéricos vistos hasta ahora:

ejercicio

Actividad Interactiva: Números irracionales


Actividad 1. Conjuntos numéricos.

ejercicio

Proposición


El número \sqrt{2} es irracional.

Representación de números irracionales

En la siguiente actividad vamos a ver algunos números irracionales importantes y su representación en la recta real.

ejercicio

Actividades Interactivas: Representación de números irracionales


1. Representación del número \sqrt{2}.
2. Representación del número de oro \phi=\cfrac{1+\sqrt{5}}{2}.
3. Representación de otras raíces cuadradas.

Raíces

Sabemos que 3^2 = 9\;\!. Esta igualdad la podemos expresar también como \sqrt{9}=3 y se lee "3 es igual a la raíz cuadrada de 9".

En general:

  • Se define la raíz cuadrada de un número a\;\! como otro número b\;\! tal que b^2 =a\;\!.

Y escribimos:

b=\sqrt{a}


  • Se define la raíz cúbica de un número a\;\! como otro número b\;\! tal que b^3 =a\;\!.

Y escribimos:

b=\sqrt[3]{a}


  • Igualmente, se define raíz n-sima de un número a\;\! como otro número b\;\! tal que b^n =a\;\!. (n \in \mathbb{Z},\ n>1)

Y escribimos:

b=\sqrt[n]{a}

El número a\;\! se llama radicando, el número n\;\!, índice y b\;\! es la raíz.

Propiedades:

  • \sqrt[n]{1}=1 y \sqrt[n]{0}=0, para cualquier valor del índice n\;\!.
  • Si a>0\;\!, \sqrt[n]{a} existe cualquiera que sea el índice n\;\!.
  • Si a<0\;\!, \sqrt[n]{a} sólo existe si el índice n\;\! es impar.
  • Si el índice n\;\! es par y el radicando a>0\;\!, la raíz tiene dos soluciones: una positiva y otra negativa, pero iguales en valor absoluto. Si el índice es impar, siempre tiene una única solución, que tiene el mismo signo que el radicando a\;\!.

Raíces exactas e inexactas

Se llaman raíces exactas a aquellas que dan como resultado un número racional. En caso contrario diremos que son inexactas y el resultaado será un número irracional.

Para que una raíz sea exacta, al descomponer el radicando en factores primos, las potencias de éstos deben ser todas números divisibles por el índice.

ejercicio

Ejemplo: Raíces exactas e inexactas


Calcula las siguientes raíces cuando sean exactas:

a) \sqrt[3]{216} \quad b) \sqrt[4]{0'0256}\quad c) \sqrt[3]{192}

La raíz como potencia de exponente fraccionario

ejercicio

Proposición


  • Toda raíz se puede expresar como una potencia cuya base es el radicando, a\;\!, y el exponente es \cfrac{1}{n}, siendo n\;\! el índice de la raíz. Ésto es:

\sqrt[n]{a}=a^\frac{1}{n}

  • De forma similar, también se cumple:

\sqrt[n]{a^m}=a^\frac{m}{n}

ejercicio

Ejemplo: La raíz como potencia de exponente fraccionario


Escribe las siguientes potencias de exponente fraccionario en forma de raíces y calcula su valor:
a)\ 16^\frac{3}{4}\quad b)\ 27^\frac{2}{3}\quad c)\ 125^\frac{4}{3}\quad d)\ 100^{-\frac{3}{2}}\quad e)\ 8^{-\frac{2}{3}}

Propiedades: Las potencias con exponente fraccionario tienen las mismas propiedades que con exponente natural o entero.

Herramientas personales
AVISO: Si los applets de Java no te funcionan prueba a bajar a "Media" el nivel de seguridad en: Panel de Control > Java > Seguridad > Nivel de Seguridad
COMPARTE ESTA WEB: