Raíces
De Wikipedia
Enlaces internos | Para repasar | Enlaces externos |
Indice | WIRIS Geogebra Calculadora |
Tabla de contenidos |
Raíz cuadrada de un número natural
La raíz cuadrada es la operación inversa de elevar al cuadrado:
La raíz cuadrada de un número es otro número que elevado al cuadrado da . Simbólicamente:
Al número se le llama radicando y al número se le llama raíz.
Raíz cuadrada de un número natural. Ejemplos. Obtención con la calculadora.
Raíz cuadrada de un número natural. Algoritmo para su cálculo.
Ejemplos de raíces cuadradas.
Raíces cuadradas exactas, inexactas y enteras
Los cuadrados perfectos son los cuadrados de los números naturales:
- Raíz cuadrada exacta es aquella cuyo radicando es un cuadrado perfecto.
- Raíz cuadrada inexacta es aquella cuyo radicando no es un cuadrado perfecto.
- Raíz cuadrada entera de un número es el mayor número natural cuyo cuadrado es menor o igual que dicho número. Se llama resto de la raíz cuadrada entera de un número a la diferencia entre dicho número y el cuadrado de su raíz cuadrada entera.
- La raíz cuadrada de 16 es exacta y su valor es 4, porque 16 es un cuadrado perfecto:
- La raíz cuadrada de 26 no es exacta y su raíz cuadrada entera es 5, porque:
Nota: El símbolo significa "aproximadamente igual".
- Raíces cuadradas sencillas.
- Raíces cuadradas exactas y no exactas. Cálculo por exceso y por defecto.
- Ráices enteras y resto.
4 ejemplos.
Tutorial que explica el cálculo de la raíz cuadrada entera y su resto.
Halla .
Tutorial que explica qué son los cuadrados perfectos y pone ejemplos con números menores que 100.
Tutorial que explica qué son los cuadrados perfectos y pone ejemplos con números mayores que 100.
Tutorial que explica qué son los cuadrados perfectos. La segunda parte del tutorial requiere conocer la descomposición en factores primos.
Practica con las raíces cuadradas exactas.
Practica con las raíces cuadradas enteras.
Actividad para que aprendas los cuadrados perfectos.
Raíces cuadradas de cuadrados perfectos.
Raíces cuadradas factorizando.
Raíces cuadradas exactas.
Ejercicios de autoevaluación sobre raíces cuadradas de números naturales.
Ejercicios de autoevaluación sobre raíces cuadradas exactas.
Ejercicios de autoevaluación sobre raíces cuadradas enteras.
Juego de tres en raya matemático para practicar las raíces cuadradas.
Cálculo de la raíz cuadrada por tanteo
Calcular una ráiz cuadrada por tanteo consiste en ir probando con distintos números, viendo si sus cuadrados son menores, mayores o iguales que el radicando, hasta averiguar entre qué dos cuadrados perfectos se encuentra el radicando.
Cálculo de la raíz cuadrada de un número usando el método de tanteo. Ejemplos.
Algoritmo de la raíz cuadrada
Cálculo de la raíz cuadrada de un número natural usando el algoritmo. Ejemplos.
Raíces de números enteros. Algoritmo.
Cómo se calculan las raíces cuadradas. Algoritmo para calcular las raíces cuadradas, paso a paso.
Ejemplos de cálculo de raíces cuadradas exactas de un número natural usando el algoritmo.
Ejemplos de cálculo de raíces cuadradas enteras de un número natural usando el algoritmo.
Calcula:
Calcula:
Calcula:
Actividades para aprender a calcular raíces cuadradas mediante el algoritmo.
En esta escena podrás practicar con el algoritmo de la raíz cuadrada.
Actividades para aprender a calcular raíces cuadradas mediante el algoritmo.
Ejercicios resueltos sobre el cálculo de raíces cuadradas usando el algoritmo.
Raíces cuadradas de números enteros
La definición de raíz cuadrada de un número entero es la misma que la dada para números naturales.
La raíz cuadrada de un número es otro número que elevado al cuadrado da . Simbólicamente:
Al número se le llama radicando y al número se le llama raíz.
Número de soluciones de una raíz cuadrada
Dependiendo del signo del número entero, su raíz puede existir o no. Tenemos los dos casos siguientes:
Número de soluciones de la raíz cuadrada
- La raíz cuadrada de un número entero positivo tiene dos soluciones iguales pero opuestas en signo, que no siempre son números enteros.
- La raíz cuadrada de un número entero negativo no existe.
Raíz cuadrada de un número entero. Ejemplos
Simplificando raíces ccuadradas no exactas: 5\,\sqrt{117}
- Actividad para aprender a calcular raíces de números enteros.
- Actividad para practicar las raíces de números enteros.
Actividades sobre raíces cuadradas exactas y enteras.
Ejercicios de autoevaluación sobre raíces de números enteros.
Raíz n-ésima de un número
La raíz n-ésima de un número es otro número tal que y que escribimos simbólicamente .
El número se llama radicando, el número índice y la raíz.
Si el índice es 2 las llamaremos raíces cuadradas; si el índice es 3, raíces cúbicas; si es 5, 6, ..., raíces cuartas, quintas, ....
Propiedades de las raíces
Propiedades
- ; , para cualquier valor del índice .
- Si , existe cualquiera que sea el índice .
- Si , sólo existe si el índice es impar.
- Si el índice es par y el radicando , la raíz tiene dos soluciones: una positiva y otra negativa, pero iguales en valor absoluto.
- Si el índice es impar, siempre tiene una única solución, que tiene el mismo signo que el radicando .
Tutorial que explica la definición de raíz (radical) realizando el cálculo de alguna raíces exactas de números racionales (enteros y decimales).
Raíz n-ésmina de un número. Ejemplos sencillos.
Raíz n-ésmina de un número. Ejemplos más complejos.
Raíz n-ésmina de un número. Ejemplos sencillos.
- Raíces de un número entero.
- Raíces cuadradas y cúbicas.
- Partes de una raíz.
- Raíces de números positivo, negativos y del cero.
- Raíz exacta y raíz entera.
- Calculo manual de raíces cuadradas.
- Los radicales.
- Extracción de factores de un radical.
1) Completa:
- 1a)
- 1b)
- 1c)
- 1d)
2) Completa:
- 2a)
- 2b)
- 2c)
- 2d)
- 2e)
- 2f)
3) Completa:
- 3a)
- 3b)
- 3c)
- 3d)
- 3e)
- 3f)
- 3g)
4) Contesta:
- 4a) ¿Hay algún número que elevado al cuadrado dé -25? ¿Existe ?
- 4b) ¿Hay algún número que elevado al cuadrado dé -36? ¿Existe ?
- 4c) ¿hay algún número que elevado al cuadrado dé un número negativo?
- 4d) ¿Hay algún número que elevado al cubo dé -27? ¿Existe ?
- 4e) ¿Hay algún número que elevado al cubo dé -64? ¿Existe ?
- 4f) ¿hay algún número que elevado al cubo dé un número negativo?
- 4g) ¿Hay algún número que elevado a la cuarta dé -81? ¿Existe ?
- 4h) ¿Hay algún número que elevado a la quinta dé -243? ¿Existe ?
- 4i) ¿De qué depende que exista una raíz de radicando negativo?
5) Calcula:
- 5a) ;
- 5b) ;
- 5c) ;
- 5d) ;
- 5e) ;
- 5f) ;
- 5g) ;
- 5h) ;
- 5i) ;
- 5j) ;
6) Calcula:
- 6a) ;
- 6b) ;
- 6c) ;
- 6d) ;
- 6e) ;
6) Calcula:
- 7a) ;
- 7b) ;
- 7c) ;
- 7d) ;
8) Indica, en cada caso, la raíz, el índice y el radicando:
- 8a)
- 8b)
- 8c)
9) Completa:
- 9a)
- 9b)
- 9c)
- 9d)
- 9e)
- 9f)
- 9g)
- 9f)
10) Calcula las raíces enteras por exceso y por defecto:
- 10a) ;
- 10b) ;
- 10c) ;
11) Calcula a mano las siguientes raíces:
- 11a)
- 11b)
11) Calcula a mano las siguientes raíces:
- 11c)
- 11d)
- 11e)
- 11f)
Actividades para que aprendas a calcular la raíz n-ésima de un número entero.
La raíz como potencia de exponente fraccionario
Proposición: La raíz como potencia de exponente fraccionario
Toda raíz se puede expresar como una potencia de la siguiente forma:
|
Basta con ver que se cumple la condición de la definición de raíz:
Ejemplo: La raíz como potencia de exponente fraccionario
Escribe las siguientes raíces como potencias de exponente fraccionario y calcula su valor:
a)
b) (por ser el índice par tiene dos soluciones de signos opuestos)Potencia de exponente fraccionario. Ejemplos.
Potencia de exponente fraccionario. Ejemplos.
Potencia de exponente fraccionario. Ejemplos.
Expresa como potencia de exponente fraccionario:
- a)
- b)
- c)
Averigua el valor de a:
Averigua el valor de k:
Simplifica:
Ejercicios de autoevaluación sobre potencias de exponente fraccionario.
Ejercicios de autoevaluación sobre potencias de exponente fraccionario.
Ejercicios de autoevaluación sobre potencias de exponente fraccionario.
Ejercicios de autoevaluación sobre potencias de exponente fraccionario.
Ejercicios de autoevaluación sobre potencias de exponente fraccionario.
Ejercicios de autoevaluación sobre potencias de exponente fraccionario.
Propiedades de las potencias de exponente fraccionario
Las potencias con exponente fraccionario tienen las mismas propiedades que con exponente natural o entero.
Calcula:
- a)
- b)
- c)
Calcula:
- a)
- b)
- c)
Calcula:
- a)
- b)
Calcula:
Simplifica:
Actividades para que aprendas a operar con raíces expresadas en forma de potencias de exponente fraccionario y a utilizar sus propiedades.
Simplifica expresiones radicales
Raíces exactas e inexactas
Se llaman raíces exactas de un número a aquellas que dan como resultado un número racional. En caso contrario diremos que son inexactas y el resultado será un número irracional.
Raíces exactas e inexactas
Para que una raíz sea exacta, al descomponer el radicando en factores primos, los exponentes de éstos deben ser todos divisibles por el índice de la raíz.
Ejemplo: Raíces exactas e inexactas
Calcula las siguientes raíces cuando sean exactas:
a) Descomponemos .
Como las potencias son divisibles por 3, la raíz es exacta. Para obtenerla, la regla práctica consiste en dividir cada exponente entre el índice. A continuación se explica el porqué de forma detallada:
Luego es racional.
b) Descomponemos .
Como las potencias son divisibles por 4, la raíz es exacta. Para obtenerla, dividimos cada exponente entre el índice:
Luego es racional.
c) Descomponemos .
El exponente de 3 es 1, que no es divisible por 3. Por tanto, la raíz no es exacta.
Luego es irracional.Tutorial que explica las raíces exactas e inexactas y pone ejemplos de ambas.
Raíces exactas:
Calcula:
- a)
- b)
Calcula:
- a)
- b)
Calcula:
- a)
- b)
Raíces de fracciones
Cómo se calculan las raíces de fracciones. Ejemplos.
Cómo se suman y restan las raíces de fracciones. Ejemplos.
Cómo se multiplican raíces de fracciones. Ejemplos.
Cómo se dividen raíces de fracciones. Ejemplos.
Cómo se calculan las potencias de raíces de fracciones. Ejemplos.
Cómo se calculan las raíces de raíces de fracciones. Ejemplos.
Suma y resta de raíces de fracciones:
- 1)
- 2)
- 3)
- 4)
- 5)
Suma y resta de raíces de fracciones:
- 6)
- 7)
- 8)
- 9)
Multiplicaciones de raíces de fracciones:
- 10)
- 11)
- 12)
- 13)
Multiplicaciones de raíces de fracciones:
- 14)
- 15)
- 16)
Multiplicaciones de raíces de fracciones:
- 17)
- 18)
- 19)
- 20)
Multiplicaciones de raíces de fracciones:
- 21)
- 22)
- 23)
Multiplicaciones de raíces de fracciones:
- 24)
- 25)
- 26)
División de raíces de fracciones:
- 27)
- 28)
- 29)
- 30)
División de raíces de fracciones:
- 31)
- 32)
División de raíces de fracciones:
- 33)
- 34)
- 35)
División de raíces de fracciones:
- 36)
- 37)
- 38)
Potencias de raíces de fracciones:
- 39)
- 40)
- 41)
- 42)
- 43)
Convierte en potencias de exponente fraccionario:
- 44) ; 45) ; 46)
- 47) ; 48) ; 49)
- 50) ; 51) ; 52)
- 53)
Convierte la potencia en raíz:
- 54) ; 55) ; 56)
- 57) ; 58) ; 59)
Raíces de una raíz de una fracción:
- 60) ; 61) ; 62)
- 63) ; 64) ; 65)
- 66) ; 67)
Calculadora
Raíz cuadrada
Calculadora: Raíz cuadrada |
Raíz cúbica
Calculadora: Raíz cúbica |
Otras raíces
Calculadora: Otras raíces |