Raíces y Radicales (4ºESO-B)

De Wikipedia

Tabla de contenidos

Raíces

Raíz n-ésima de un número

Se define raíz n-ésima (n \in \mathbb{N},\ n>1)de un número a \in \mathbb{R} como otro número b \in \mathbb{R} tal que b^n =a\;\! y que escribimos simbólicamente b=\sqrt[n]{a}.

\sqrt[n]{a}=b \iff b^n =a

El número a\;\! se llama radicando, el número n\;\! índice y b\;\! la raíz.

Propiedades de las raíces

  • \sqrt[n]{1}=1 , \sqrt[n]{0}=0, para cualquier valor del índice n\;\!.
  • Si a>0\;\!, \sqrt[n]{a} existe cualquiera que sea el índice n\;\!.
  • Si a<0\;\!, \sqrt[n]{a} sólo existe si el índice n\;\! es impar.
  • Si el índice n\;\! es par y el radicando a>0\;\!, la raíz tiene dos soluciones: una positiva y otra negativa, pero iguales en valor absoluto.
  • Si el índice n\;\! es impar, siempre tiene una única solución, que tiene el mismo signo que el radicando a\;\!.

La raíz como potencia de exponente fraccionario

ejercicio

Proposición: La raíz como potencia de exponente fraccionario


Toda raíz se puede expresar como una potencia de la siguiente forma:

\sqrt[n]{a^m}=a^\frac{m}{n}

ejercicio

Ejemplo: La raíz como potencia de exponente fraccionario


Escribe las siguientes potencias de exponente fraccionario en forma de raíces y calcula su valor:
a)\ 16^\frac{3}{4}\quad b)\ 27^\frac{2}{3}\quad c)\ 125^\frac{4}{3}\quad d)\ 100^{-\frac{3}{2}}\quad e)\ 8^{-\frac{2}{3}}

ejercicio

Propiedades de las potencias de exponente fraccionario


Las potencias con exponente fraccionario tienen las mismas propiedades que con exponente natural o entero.

Raíces exactas e inexactas

Se llaman raíces exactas a aquellas que dan como resultado un número racional. En caso contrario diremos que son inexactas y el resultado será un número irracional.

Para que una raíz sea exacta, al descomponer el radicando en factores primos, las potencias de éstos deben ser todas números divisibles por el índice.

ejercicio

Ejemplo: Raíces exactas e inexactas


Calcula las siguientes raíces cuando sean exactas:

a) \sqrt[3]{216} \quad b) \sqrt[4]{0.0256}\quad c) \sqrt[3]{192}

Calculadora

Raíz cuadrada

Calculadora

Calculadora: Raíz cuadrada


Para calcular raíces cuadradas usaremos la tecla Raíz cuadrada.

Raíz cúbica

Calculadora

Calculadora: Raíz cúbica


Para calcular raíces cúbicas usaremos la tecla Raíz cúbica.

Otras raíces

Calculadora

Calculadora: Otras raíces


Para calcular la raíz cuarta, quinta, etc., usaremos la tecla Raíz de índice x.

wolfram

Actividad: Raíces


Calcula:

a) \sqrt {0.0001}
b) \sqrt[3] {-512}
c) \sqrt[4] {16}

Radicales (Nivel básico)

Radical

El término radical se usa para referirse a expresiones del tipo k \cdot \sqrt[n]{a}~,~k \in \mathbb{R}

Operaciones con radicales

Propiedades de las operaciones con radicales

ejercicio

Propiedades de las operaciones con radicales


1. \sqrt[np]{a^p}=\sqrt[n]{a}
2. \left ( \sqrt[n]{a}\right )^p=\sqrt[n]{a^p}
3. \sqrt[m]{\sqrt[n]{a}}=\sqrt[mn]{a}
4. \sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a \cdot b}
5. \cfrac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\cfrac{a}{b}}

ejercicio

Ejercicios resueltos: Radicales. Propiedades


Simplificar: a) \sqrt[12]{x^9},    b) \left ( \sqrt[3]{a^2} \right )^6,    c) \sqrt{\sqrt[3]{a}},    d) \sqrt[3]{3} \cdot \sqrt[3]{9},    e) \sqrt{12} : \sqrt{3}

ejercicio

Actividad Interactiva: Radicales. Propiedades


         Operaciones con radicales del mismo índice.

Suma y resta de radicales con el mismo índice y radicando

Para sumar y restar radicales, éstos deben tener el mismo radicando y el mismo índice. En tal caso el radical el radical resultante tiene como coeficiente la suma o resta de los coeficientes de cada uno de los radicales.

ejercicio

Ejemplo: Suma y resta de radicales con el mismo índice y radicando


Efectúa las siguientes sumas y restas de radicales:
  1. 3\sqrt{5}-\sqrt{5}+5\sqrt{5}
  1. 3\sqrt{2}-\sqrt{3}
  1. 3\sqrt[3]{2}+\sqrt{2}

Radicales (Ampliación)

Extracción e introducción de factores en un radical

Extracción de factores

Para extaer factores de un radical se divide el exponente entre el índice y se saca el factor elevado al cociente de la división quedando ese factor elevado al resto.

ejercicio

Ejemplo: Extracción de factores de un radical


Extrae todo lo que se pueda de este radical: \sqrt[3]{6000}

Introducción de factores

Para introducir un factor dentro de un radical, éste se eleva al índice del radical y el resultado se multiplica por el radicando del radical.

ejercicio

Ejemplo: Introducción de factores en un radical


Introduce los factores dentro del radical: 10 \sqrt[3]{6}

ejercicio

Actividad Interactiva: Introducción y extracción de factores de un radical


         Introduce y extráe factores de radicales.

Suma y resta de radicales con el mismo índice y distinto radicando

Si tienen el mismo índice pero distinto radicando, a veces, podemos extraer factores del radical y dejarlos con el mismo radicando.

ejercicio

Ejemplo: Suma y resta de radicales con el mismo índice y distinto radicando


Resta los siguientes radicales: \sqrt{48}-\sqrt{75}

wolfram

Actividad: Suma y resta de radicales con el mismo índice y distinto radicando


Simplifica \sqrt[4]{3} - \sqrt[4]{243}

ejercicio

Actividad Interactiva: Suma y resta de radicales


         Suma y resta radicales con el mismo índice y distinto radicando.

Producto y cocientes de radicales de distinto índice

Para multiplicar o dividir radicales de distinto índice, primero se reducen a índice común y luego se multiplican o dividen los radicandos.

ejercicio

Ejemplo: Producto y cocientes de radicales de distinto índice


Reduce a un solo radical \sqrt[3]{10} \cdot \sqrt[4]{5}:\sqrt{8}

Racionalización de denominadores

Se llama racionalización al procedimiento por el cual a partir de una fracción con raíces en el denominador obtenemos otra fracción equivalente sin raíces en el denominador

Caso 1: Denominador con raíces cuadradas

Para racionalizar uno radical de este tipo se debe multiplicar el numerador y el denominador de la fracción por el denominador de la misma.

ejercicio

Ejemplo: Caso 1: Denominador con raíces cuadradas


Racionalizar \frac{{6}}{\sqrt{2}}

Caso 2: Denominador con otras raíces

En este caso, los exponentes del radicando del radical por el que se deben multiplicar el numerador y denominador de la fracción será la diferencia entre los exponentes actuales y el índice (o múltiplo del indice más cercano) del radical.

ejercicio

Ejemplo: Caso 2: Denominador con otras raíces


Racionalizar \frac{{2}}{\sqrt[5]{a^3b^4}}

Caso 3: Denominador con sumas y restas de raíces

Para este último caso, se multiplica y divide por la expresión conjugada del denominador (solo se le cambia el segundo signo de la expresión)

ejercicio

Ejemplo: Caso 3: Denominador con sumas y restas de raíces


Racionalizar \frac{{2}}{\sqrt{2}+\sqrt{3}}
wolfram

Actividad: Racionalización


Racionaliza \frac{{5}}{\sqrt{3}-\sqrt{5}}


Herramientas personales
* AVISO: Si los applets de Java no te funcionan debes usar Firefox, instalar Java e incluir http://maralboran.org en la lista de excepciones del panel de Java ubicado en: Panel de Control > Java > Seguridad > Editar lista de sitios