Ramas infinitas. Asíntotas (1ºBS)

De Wikipedia

Tabla de contenidos

Ramas infinitas

Una función presenta una rama infinita si presenta una asíntota o una rama parabólica.

Pasamos a definir asíntota y rama parabólica.

Asíntota

Una asíntota es una recta hacia la que se acerca la gráfica de una función, tanto como se quiera, a medida que la variable independiernte se aproxima a un punto, a + \infty o a -\infty.

Hay tres tipos:

  • Asíntota vertical (A.V.)
  • Asíntota horizontal (A.H.)
  • Asíntota oblicua (A.O.)

Nota: La función nunca puede cortar una A.V., pero si puede cortar a una A.H. o a una A.O.

Asíntota vertical

Una función f(x)\; presenta en x=a\; una asíntota vertical (A.V.) si ocurre alguna, o ambas, de estas dos cosas:

\lim_{x \to a^+} f(x)=+ \infty \ \ (\acute{o} \ -\infty)
\lim_{x \to a^-} f(x)=+ \infty \ \ (\acute{o} \ -\infty)

Nota: Se pueden dar las dos condiciones o una sola de ellas.

Asíntota vertical: x = 2

Asíntota horizontal

Una función f(x)\; presenta una asíntota horizontal (A.H.) en y=a\; si:

\lim_{x \to +\infty} f(x)= a

o bien,

\lim_{x \to -\infty} f(x)= a

Nota: Se pueden dar las dos condiciones o una sola de ellas.

Asíntota horizontal: y = 1

Asíntota oblicua

Una función f(x)\; presenta una asíntota oblicua (A.O.) en y=mx+n\; si:

\lim_{x \to +\infty} [f(x)-(mx+n)]= 0

o bien,

\lim_{x \to -\infty} [f(x)-(mx+n)]= 0

Nota: Se pueden dar las dos condiciones o una sola de ellas.


Para calcular los coeficientes m\; y n\; de la asíntota, se procederá de la siguiente manera:

m=\lim_{x \to +\infty} \cfrac{f(x)}{x}     (o bien, con x \to -\infty)
n=\lim_{x \to +\infty} [f(x)-mx]     (o bien, con x \to -\infty)

Asíntota oblicua: y = x + 3

Rama parabólica

Una función f(x)\; presenta una rama parabólica si no presenta una asíntota oblicua pero cumple que:

\lim_{x \to +\infty} f(x)= +\infty \ (\acute{o} -\infty)

o bien,

\lim_{x \to -\infty} f(x)= +\infty \ (\acute{o} -\infty)

Ramas parabólicas

Estudio de las asíntotas de una función


Ramas infinitas de las funciones racionales

ejercicio

Proposición


Consideremos la función racional en la variable x, ya simplificada (es decir, si el numerador y el denominador tienen factores comunes, cosa que ocurre si se anulan simultáneamente en algún punto, factorizaremos y simplificaremos dichos factores):

f(x)=\cfrac{P(x)}{Q(x)}=\cfrac{a_nx^n+a_{n-1}x^{n-1}+ \cdots + a_1 x + a_0}{b_m x^m+b_{m-1}x^{m-1}+ \cdots + b_1 x + b_0}\;

La función f(x)\; (ya simplificada) tiene las siguientes ramas infinitas, si se da alguno de los siguientes casos:

  • Asíntotas verticales:
    • Si x=c\; es una raíz de Q(x), entonces la recta x=c\; es una asíntota vertical de f(x)\;.

  • Asíntotas horizontales:
    • Si n<m\;, entonces la recta y=0\; es una asíntota horizontal de f(x)\;, tanto por + \infty, como por - \infty.
    • Si n=m\;, entonces la recta y=\cfrac{a_n}{b_n}\; es una asíntota horizontal de f(x)\;, tanto por + \infty, como por - \infty.

  • Asíntotas oblicuas:
    • Si n-m=1\;, f(x)\; tienen una asíntota oblicua, tanto por + \infty, como por - \infty. Dicha asíntota es igual al cociente de la división entre P(x)\; y Q(x)\;.

  • Ramas parabólicas:
    • Si n-m>1\;, entonces f(x)\; tiene una rama parabólica, tanto por + \infty, como por - \infty.

ejercicio

Ejercicios resueltos


Halla todas las ramas infinitas de las siguientes funciones:

a) y=\cfrac{x^2+1}{x^2-2x}        b) y=\cfrac{x^2-5x+7}{x-2}        c) y=\cfrac{x^3-5x^2}{-x+3}

Ramas infinitas de las funciones trigonométricas, exponenciales y logarítmicas

Funciones trigonométricas

Si recordamos las propiedades de las funciones trigonométricas, tenemos:

ejercicio

Propiedades


  • Las funciones y=sen x\;, y=cos x\; e y=tg x\;, por ser periódicas, no tienen límite cuando x \to +\infty ni cuando x \to -\infty. Por tanto no tienen ramas parabólicas, ni asíntotas horizontales. Las dos primeras tampoco tienen asíntotas verticales por ser su dominio los números reales.
  • La función y=tg x\;, tiene infinitas asíntotas verticales en los puntos
\left \{ x= \pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}

Funciones exponenciales

Si recordamos las propiedades de las funciones exponenciales, tenemos:

ejercicio

Propiedades


La función y=a^x\; tiene:

  • Asíntota horizontal:
  • En y=0\; para x \to +\infty si a>1\;
  • En y=0\; para x \to +\infty si 0<a<1\;
  • Rama parabólica:
  • Para x \to +\infty si a>1\;
  • Para x \to -\infty si 0<a<1\;
  • Asíntota vertical: No tiene, pués es continua en toda la recta real.

Funciones logartmicas

Si recordamos las propiedades de las funciones logarítmicas, tenemos:

ejercicio

Propiedades


La función y=log_a \, x\; tiene:

  • Asíntota vertical:
  • En x=0\;, cuando x \to 0^+.
  • Rama parabólica:
  • Para x \to +\infty

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda