Función inversa o recíproca (1ºBach)
De Wikipedia
Revisión de 19:12 30 ene 2009 Coordinador (Discusión | contribuciones) (→Videos sobre funciones inversas) ← Ir a diferencia anterior |
Revisión de 20:15 2 feb 2009 Coordinador (Discusión | contribuciones) (→Videos sobre funciones inversas) Ir a siguiente diferencia → |
||
Línea 87: | Línea 87: | ||
{{Video_enlace2 | {{Video_enlace2 | ||
|titulo1=Función inversa o recíproca | |titulo1=Función inversa o recíproca | ||
- | |duracion= | + | |duracion=6'42" |
- | |sinopsis=Video tutorial de matematicasbachiller.com | + | |sinopsis=:Ejemplo práctico que ilustra el concepto de función inversa. |
|url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42.html | |url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42.html | ||
}} | }} | ||
Línea 96: | Línea 96: | ||
|enunciado= | |enunciado= | ||
{{Video_enlace2 | {{Video_enlace2 | ||
- | |titulo1=1. Ejemplos | + | |titulo1=1. Ejemplo |
- | |duracion='" | + | |duracion=8'36" |
- | |sinopsis=Video tutorial de matematicasbachiller.com | + | |sinopsis=:Cálculo de la función inversa de <math>y=9+3x\;</math>. Representación gráfica. |
|url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_01.html | |url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_01.html | ||
}} | }} | ||
{{Video_enlace2 | {{Video_enlace2 | ||
- | |titulo1=1. Ejemplos | + | |titulo1=2. Ejemplo |
- | |duracion='" | + | |duracion=3'10" |
- | |sinopsis=Video tutorial de matematicasbachiller.com | + | |sinopsis=:Cálculo de la función inversa de <math>y=e^{x-2}\;</math> |
- | |url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_01.html | + | |
- | }} | + | |
- | {{Video_enlace2 | + | |
- | |titulo1=2. Ejemplos | + | |
- | |duracion='" | + | |
- | |sinopsis=Video tutorial de matematicasbachiller.com | + | |
|url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_02.html | |url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_02.html | ||
}} | }} | ||
{{Video_enlace2 | {{Video_enlace2 | ||
|titulo1=3. Ejemplos | |titulo1=3. Ejemplos | ||
- | |duracion='" | + | |duracion=2'44" |
- | |sinopsis=Video tutorial de matematicasbachiller.com | + | |sinopsis=:Cálculo de la función inversa de <math>y=\cfrac{3}{4+x}\;</math> |
|url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_03.html | |url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_03.html | ||
}} | }} | ||
{{Video_enlace2 | {{Video_enlace2 | ||
|titulo1=4. Ejemplos | |titulo1=4. Ejemplos | ||
- | |duracion='" | + | |duracion=3'20" |
- | |sinopsis=Video tutorial de matematicasbachiller.com | + | |sinopsis=:Cálculo de la función inversa de <math>y=x^2\;</math> |
|url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_04.html | |url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_04.html | ||
}} | }} | ||
{{Video_enlace2 | {{Video_enlace2 | ||
|titulo1=5. Ejemplos | |titulo1=5. Ejemplos | ||
- | |duracion='" | + | |duracion=7'32" |
- | |sinopsis=Video tutorial de matematicasbachiller.com | + | |sinopsis= |
+ | *Cálculo de la función inversa de <math>y=4^{x-1}\;</math> | ||
+ | *La función inversa de <math>y=x+1+ln \, x \;</math> no se puede obtener de forma explícita. | ||
|url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_05.html | |url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_42_05.html | ||
}} | }} | ||
Línea 135: | Línea 131: | ||
{{Video_enlace2 | {{Video_enlace2 | ||
|titulo1=Ojo con la notación de las funciones inversas | |titulo1=Ojo con la notación de las funciones inversas | ||
- | |duracion= | + | |duracion=12'43" |
- | |sinopsis=Video tutorial de matematicasbachiller.com | + | |sinopsis=:Hay que tener cuidado con los conjuntos inicial y final de una función y de su inversa, y la notación que usamos para representar las variables independientes y dependientes. |
|url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_43.html | |url1=http://www.matematicasbachiller.com/videos/cdiferencial/01/di01_43.html | ||
}} | }} | ||
[[Categoría: Matemáticas]][[Categoría: Funciones]] | [[Categoría: Matemáticas]][[Categoría: Funciones]] |
Revisión de 20:15 2 feb 2009
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Función inversa o recíproca
Si ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Sea ![]() Propiedades Sea
donde Demostración: |
Actividad Interactiva: Función inversa
Actividad 1. Representación gráfica de una función
![]() ![]() Actividad: En esta escena tienes la gráfica de la función ![]() ![]() ![]() Prueba a cambiar también la función |
Ejemplo: Función inversa
Halla la función inversa de la función definida por
:
Como la función no es inyectiva, no podemos calcular su inversa. No obstante, podemos descomponerla en dos trozos que si sean funciones inyectivas por separado y alos que si podamos calcular su inversa:

En la siguiente escena puedes ver (en verde),
(en amarillo), y
(en turquesa):
Videos sobre funciones inversas

- Ejemplo práctico que ilustra el concepto de función inversa.
Ejemplos: Función inversa

- Cálculo de la función inversa de
. Representación gráfica.

- Cálculo de la función inversa de

- Cálculo de la función inversa de

- Cálculo de la función inversa de

- Cálculo de la función inversa de
- La función inversa de
no se puede obtener de forma explícita.

- Hay que tener cuidado con los conjuntos inicial y final de una función y de su inversa, y la notación que usamos para representar las variables independientes y dependientes.