Tablas de datos
De Wikipedia
Revisión de 18:45 19 jun 2007 Juanmf (Discusión | contribuciones) (→Tablas de frecuencias) ← Ir a diferencia anterior |
Revisión de 19:05 19 jun 2007 Juanmf (Discusión | contribuciones) (→Tablas de frecuencias) Ir a siguiente diferencia → |
||
Línea 125: | Línea 125: | ||
{{p}} | {{p}} | ||
<center><iframe> | <center><iframe> | ||
- | url=http://maralboran.ath.cx/web_ma/wiki_Estadistica/descriptiva/variables/ | + | url=http://maralboran.ath.cx/web_ma/wiki_Estadistica/descriptiva/variables/frecuencias_discreta_est.htm |
width=100% | width=100% | ||
height=475 | height=475 | ||
Línea 135: | Línea 135: | ||
{{p}} | {{p}} | ||
<center><iframe> | <center><iframe> | ||
- | url=http://maralboran.ath.cx/web_ma/wiki_Estadistica/descriptiva/variables/ | + | url=http://maralboran.ath.cx/web_ma/wiki_Estadistica/descriptiva/variables/frecuencias_continua_est.htm |
width=100% | width=100% | ||
height=475 | height=475 |
Revisión de 19:05 19 jun 2007
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadora |
Tabla de contenidos |
Tablas estadísticas
Son utilizadas para organizar los datos. Según el número de observaciones y según el recorrido de la variable estadística, tenemos los siguientes tipos de tablas estadísticas:
Tablas Tipo I
Cuando el tamaño de la muestra y el recorrido (mayor valor menos el valor menor) de la variable son pequeños, por ejemplo si tenemos una muestra de las edades de 5 personas, por lo que no hay que hacer nada especial simplemente anotarlas de manera ordenada en filas o columnas.
Edad de los 5 miembros de una familia:
5, 8, 16, 38, 45
Tablas Tipo II
Cuando el tamaño de la muestra es grande y el recorrido de la variable es pequeño, por lo que hay valores de la variable que se repiten.
Por ejemplo, si preguntamos el número de personas activas que hay en 50 familias obtenemos la siguiente tabla:
Personas Activas en 50 familias
2 | 1 | 2 | 2 | 1 | 2 | 4 | 2 | 1 | 1 |
2 | 3 | 2 | 1 | 1 | 1 | 3 | 4 | 2 | 2 |
2 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 2 | 2 |
3 | 2 | 3 | 1 | 2 | 4 | 2 | 1 | 4 | 1 |
1 | 3 | 4 | 3 | 2 | 2 | 2 | 1 | 3 | 3 |
Personas activas | Número de familias |
1 | 16 |
2 | 20 |
3 | 9 |
4 | 5 |
total | 50 |
Tablas Tipo III
Cuando el tamaño de la muestra y el recorrido de la variable son grandes, por lo que será necesario agrupar en intervalos los valores de la variable. Tambien obligatorio usarla cuando la variable sea cuantitativa continua.
Por ejemplo si a un grupo de 30 alumnos les preguntamos el dinero que en ese momento tienen ahorrado, nos encontramos con los siguientes datos:
450 | 1152 | 250 | 300 | 175 | 80 | 25 | 2680 | 605 | 785 |
1595 | 2300 | 5000 | 1200 | 100 | 5 | 180 | 200 | 675 | 500 |
375 | 1500 | 205 | 985 | 185 | 125 | 315 | 425 | 560 | 1100 |
Amplitud =4995/10 = 499,5 .Por lo que tomaremos intervalos de amplitud 500
Debemos tener en cuenta las siguientes consideraciones:
Tomar pocos intervalos implica que la "pérdida de información" sea mayor.
Los intervalos serán siempre Cerrados por la izquierda y Abiertos por la Derecha [Li-1 , Li).
Con estas recomendaciones tendremos la siguiente tabla:
Intervalo | Nº alumnos |
[0,500) | 16 |
[500,1000) | 6 |
[1000,1500) | 3 |
[1500,2000) | 2 |
[2000,2500) | 1 |
[2500,3000) | 1 |
[3000,3500) | 0 |
[3500,4000) | 0 |
[4000,4500) | 0 |
[4500,5000) | 0 |
[5000,5500) | 1 |
Tablas de frecuencias
Ahora iremos añadiendo más columnas según los cálculos y la información que necesitemos. Podemos ir completando la tabla con las frecuencias, que definimos a continuación:
Frecuencia absoluta. Es el número de veces que aparece cualquier valor de la variable. Se representa por fi. En algunos libros de texto nos la encontraremos representada por ni.
Frecuencia absoluta acumulada. Es la suma de la frecuencia absoluta de un valor de la variable con todos los anteriores. Se representa por Fi.
Frecuencia relativa. Es el cociente entre la frecuencia absoluta y el número de datos (N). Se representa por hi. En algunos libros de texto nos la encontraremos representada por ri. Al multiplicarla por 100 obtenemos el porcentaje de individuos que presentan esta característica.
Frecuencia relativa acumulada. Es la suma de la frecuencia relativa de un valor de la variable con todos los anteriores. También se puede definir como el cociente entre la frecuencia absoluta acumulada y el número total de datos. Se representa por Hi.
En las siguientes escenas puedes construir la tabla de frecuencias para variables discretas y continuas.
Actividad Interactiva: Tablas de frecuencias
1. Variable cuantitativa discreta.
Actividad:
2. Variable cuantitativa continua.
Actividad: |
Actividad 1:
Como puedes observar no se han tenido en cuenta las variables cualitativas. Esto se debe a que al no trabajar con números no se pueden hacer operaciones. Únicamente tendría sentido en la tabla construir las columnas de frecuencias absolutas y relativas, pero no las acumuladas. En el siguiente apartado de gráficos estadísticos también se podrían representar, pero para los apartados de cálculo de parámetros no podremos trabajar con ellas. si tienes interés en alguna representación, sustituye los valores la variable por los números que quieras y represéntalas o construye la tabla