Semejanza de triángulos (3ºESO Académicas)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 16:15 17 sep 2017
Coordinador (Discusión | contribuciones)
(Polígonos semejantes)
← Ir a diferencia anterior
Revisión de 16:16 17 sep 2017
Coordinador (Discusión | contribuciones)
(Polígonos semejantes)
Ir a siguiente diferencia →
Línea 52: Línea 52:
{{p}} {{p}}
===Polígonos semejantes=== ===Polígonos semejantes===
-{{Caja_Amarilla|texto=Dos polígonos son '''semejantes''' si cumplen que sus ángulos homólogos son iguales y sus lados homólogos son proporcionales.}}+{{Polígonos semejantes}}
-{{p}}+
-{{Teorema_sin_demo|titulo=Propiedades|enunciado=Si dos polígonos son semejantes y k es la constante de proporcionalidad, entonces:+
-*La razón entre sus perímetros también es k.+
-*La razón entre sus áreas es k<sup>2</sup>.+
-}}+
-{{p}}+
-{{AI_descartes|titulo1=Polígonos semejantes+
-|url1=http://maralboran.org/web_ma/geometria/geoweb/semej1_1.html+
-|descripcion=Observa los dos polígonos de la figura. Se dice que son semejantes porque cumplen las dos condiciones antes mencionadas:+
- +
-#Los ángulos correspondientes son todos iguales.+
-#Los segmentos correspondientes son proporcionales.+
- +
-En efecto,+
- +
-1. Los ángulos son iguales ya que los lados correspondientes son paralelos.+
- +
-2. Para comprobar que los lados son proporcionales usa los segmentos MN y XY que puedes mover libremente. Mide con ellos dos segmentos correspondientes AB y A'B' por ejemplo y calcula la razón de semejanza.+
- +
-Mueve ahora el punto rojo para comprobar el valor de r.+
- +
-<center><iframe>+
-url=http://maralboran.org/web_ma/geometria/geoweb/semej1_1.html+
-width=510+
-height=420+
-name=myframe+
-</iframe></center>+
-}}+
- +
-{{Videotutoriales|titulo=Polígonos semejantes|enunciado=+
-{{Video_enlace_miguematicas+
-|titulo1=Tutorial+
-|duracion=7'35"+
-|url1=https://www.youtube.com/watch?v=cEEUqgkPKHY&index=9&list=PLLfTN7MHLxCokf6CRoyuwfardoGhRZgLl+
-|sinopsis=Polígonos semejantes. Razón de los perímetros y de las áreas.+
-}}+
-----+
-{{Video_enlace_miguematicas+
-|titulo1=Problema+
-|duracion=5'25"+
-|url1=https://www.youtube.com/watch?v=71Ii06NthNU&list=PLLfTN7MHLxCokf6CRoyuwfardoGhRZgLl&index=10+
-|sinopsis=La razón entre dos cuadrados semejantes es 3/4. Calcula cuánto miden los lados del segundo sabiendo que los del primero miden 24 cm. Calcula el área del primero si la del segundo es 1024 cm<sup>2</sup>.+
-}}+
-}}+
{{p}} {{p}}

Revisión de 16:16 17 sep 2017

Tabla de contenidos

(Pág. 186)

Triángulos semejantes

Se dice que dos figuras geométricas, y en particular dos triángulos, son semejantes si tienen la misma forma aunque sus tamaños u orientación sean diferentes.

Matemáticamente, la semejanza de triángulos la podemos expresar de la siguiente manera:

  • Dos triángulos, ABC\; y A'B'C'\;, son semejantes, y lo notaremos ABC \sim A'B'C'\;, si cumplen las dos condiciones siguientes:

1. Los ángulos correspondientes u homólogos* son iguales:
\widehat{A}=\widehat{A}'\, ,\ \widehat{B}=\widehat{B}'\, ,\ \widehat{C}=\widehat{C}'
2. Los lados correspondientes u homólogos son proporcionales:
\cfrac{c'}{c} = \cfrac {b'}{b} = \cfrac{a'}{a}=r

  • Al valor r\;\! se le llama razón de semejanza.


(*) Dos elementos de dos figuras son homólogos si ocupan el mismo lugar en ambas figuras.

Nota: Cuando veamos los criterios de semejanza de triángulos, veremos que para que dos triángulos sean semejantes bastará con que se cumpla una de las dos condiciones: que los lados homólogos sean proporcionales o que los ángulos homólogos sean iguales. En tal caso, la otra condición se cumplirá automáticamente.

Criterios de semejanza de triángulos

Los criterios de semejanza de triángulos simplifican el número de condiciones que deben comprobarse para que dos triángulos sean semejantes:

ejercicio

Criterios de semejanza de triángulos


  1. Dos triángulos son semejantes si tienen los lados proporcionales: \frac {a}{a'} = \frac {b}{b'} = \frac {c}{c'}
  2. Dos triángulos son semejantes si tienen dos ángulos respectivamente iguales: \widehat{A}=\widehat{A}',\ \widehat{B}=\widehat{B}'
  3. Dos triángulos son semejantes si tienen dos lados proporcionales e igual el ángulo comprendido: \frac {a}{a'} = \frac {b}{b'} \ , \ \widehat{C}=\widehat{C}'

Aplicaciones de los criterios de semejanza

Los criterios de semejanza que hemos visto tienen numerosas aplicaciones. Veamos algunas de ellas.

Teoremas del cateto y de la altura

ejercicio

Teorema del cateto


En todo triángulo rectángulo, un cateto, a\;, es media proporcional entre la hipotenusa, h\;, y la proyección, m\;, de dicho cateto sobre la hipotenusa, c\;.

\frac{a}{m}=\frac{c}{a} \ \rightarrow \ a^2=m \cdot c

Y análogamente con el otro cateto, b\;, y su proyección, m\;:

\frac{b}{n}=\frac{c}{b} \ \rightarrow \ b^2=n \cdot c

ejercicio

Teorema de la altura


En todo triángulo rectángulo, la altura, h\;, sobre la hipotenusa es media proporcional entre los segmentos que determina sobre ésta, m\; y n\;.

\frac{h}{n}=\frac{m}{h}

Teorema de Tales

ejercicio

Primer teorema de Tales


Dos rectas paralelas, AB y A'B', que cortan a dos rectas secantes, d y d', determinan en éstas segmentos proporcionales:

 

\frac {\overline{OA}} {\overline{OB}} = \frac {\overline{AA'}} {\overline{BB'}} = \frac {\overline{OA'}} {\overline{OB'}}

Triángulos en la posición de Tales

Dos triángulos ABC y A'B'C', con sus lados paralelos y encajados con un vértice común, se dice que están en la posición de Tales

ejercicio

Corolario


Dos triángulos son semejantes si y sólo si están en la posición de Tales.

Triángulos en la posición de Thales
Aumentar
Triángulos en la posición de Thales

Actividades

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Semejanza de triángulos


(Pág. 198)

7, 8, 9

Apéndice

Figuras semejantes

  • Dos figuras son semejantes si tienen la misma forma aunque sus tamaños u orientación sean diferentes. Esto lo expresaremos matemáticamente diciendo que:
    • Los segmentos correspondientes (homólogos) son proporcionales.
    • Sus ángulos correspondientes (homólogos) son iguales.
  • Al ser los segmentos homólogos proporcionales, se cumple que la longitud de uno de ellos se obtiene multiplicando la longitud del correspondiente por una cantidad fija, llamada razón de semejanza.

(*) Dos elementos de dos figuras son homólogos si ocupan el mismo lugar en ambas figuras.

ejercicio

Ejemplos: Figuras semejantes


  1. Tenemos dibujado en un papel un rectángulo de dimensiones 12 cm x 8 cm. Hacemos una fotocopia reducida y obtenemos otro rectángulo de dimensiones 3 cm x 2 cm. Comprueba que son semejantes y calcula la razón de semejanza. Calcula el procentaje de reducción aplicado en la fotocopia.
  2. Dos triángulos semejantes tienen una razón de semejanza de 0.75. Si los lados del mayor miden 12, 8 y 16 cm, respectivamente, ¿cuánto miden los lados del menor?

ejercicio

Propiedades


Si dos figuras son semejantes y k es la constante de proporcionalidad, entonces:

  • La razón entre sus áreas es k2.
  • La razón entre sus volúmenes k3.

ejercicio

Ejemplos: Relación entre las áreas y los volúmenes de dos figuras semejantes


  1. Comprueba que si un cuadrado tiene 5 cm de lado y el de otro cuadrado mide el doble, 10 cm, entonces el área de éste es el cuádruple de la del primero.
  2. Comprueba que si un cubo tiene 5 cm de arista y la de otro cubo mide el doble, 10 cm, entonces el volumen de éste es 8 veces la del primero.

ejercicio

Ejercicio: Relación entre las áreas de dos figuras semejantes


En una pizzería, la pizza pequeña tiene 23 cm de diámetro y es para una persona. Sin embargo, la pizza familiar tiene 46 cm de diámetro, justo el doble que la pequeña, pero dicen que es para 4 personas. ¿Nos están engañando?


La respuesta en la siguiente actividad:

Polígonos semejantes

Dos polígonos son semejantes si cumplen que sus ángulos homólogos son iguales y sus lados homólogos son proporcionales.

ejercicio

Propiedades


Si dos polígonos son semejantes y k es la constante de proporcionalidad, entonces:

  • La razón entre sus perímetros también es k.
  • La razón entre sus áreas es k2.

Escalas

Cuando representamos una casa en un plano, un coche en una maqueta o la superficie terrestre en un mapa, estamos representando figuras semejantes a las reales. La razón de semejanza entre dichas figuras diremos que es la escala del mapa, de la maqueta o del plano.

La escala es el cociente entre la longitud de un segmento en la reproducción y el correspondiente segmento en la realidad. Esto es, la escala es la razón de semejanza entre la reproducción y la realidad.

escala=\cfrac{long.~reproduccion}{long.~realidad}.

Existen tres tipos de escalas:

  • Escala natural: Cuando el tamaño del objeto representado en el plano coincide con la realidad. (1:1).
  • Escala de reducción: Se utiliza cuando el tamaño del objeto en el plano es menor que la realidad. Esta escala se utiliza para representar piezas (1:2 ó 1:5), planos de viviendas (1:50), mapas físicos de territorios donde la reducción es mucho mayor (1:50.000 ó 1:100.000).
  • Escala de ampliación: Se utiliza cuando hay que hacer el plano de piezas muy pequeñas o de detalles de un plano. En este caso el valor del numerador es más alto que el valor del denominador. Ejemplos: 2:1 ó 10:1.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda