Progresiones aritméticas
De Wikipedia
Revisión de 08:54 28 nov 2008 Juanmf (Discusión | contribuciones) (→Ejercicios) ← Ir a diferencia anterior |
Revisión de 17:58 13 dic 2008 Coordinador (Discusión | contribuciones) (→Suma de términos de una progresión aritmética) Ir a siguiente diferencia → |
||
Línea 66: | Línea 66: | ||
El porqué de esta fórmula se deduce de la siguiente historia: | El porqué de esta fórmula se deduce de la siguiente historia: | ||
- | En un pequeño pueblo de Alemania (Brunswick), un profesor castigaba a sus alumnos haciéndoles sumar números consecutivos (por ejemplo sumar los 100 primeros números naturales). Era un duro castigo, pues había que hacer muchas sumas (1 + 2 = 3, 3 + 3 = 6, 6 + 4 = 10, 10 + 5 = 15,...) y era fácil equivocarse. | + | En un pequeño pueblo de Alemania, Brunswick, un día en la escuela el profesor manda sumar los cien primeros números naturales. El maestro quería unos minutos de tranquilidad... pero transcurridos pocos segundos uno de los alumnos levanta la mano y dice tener la solución: los cien primeros números naturales suman 5.050. Y efectivamente, así era. |
- | Pero... una vez, uno de los niños le dio la solución en un tiempo sorprendente, el profesor le preguntó ¿cómo lo has hecho? El niño le dijo: 1 + 100= 101, 2 + 99 = 101, 3 + 98 = 101,... siempre suma 101 y hay 50 sumas, en total 50 * 101 = 5050. El profesor quedó tan impresionado que le regaló un libro de Aritmética. | + | El profesor le preguntó ¿cómo lo has hecho? El niño le dijo: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101,... siempre suma 101 y hay 50 sumas, en total 50 * 101 = 5050. El profesor quedó tan impresionado que le regaló un libro de Aritmética. |
- | Ese niño tenía 10 años y se llamaba '''Carl Friedrich Gaüss'''. Fue uno de los mas grandes matemáticos. | + | Ese niño tenía 10 años y se llamaba '''[[Johann Carl Friedrich Gauss|Carl Friedrich Gaüss]]'''. Fue uno de los mas grandes matemáticos. |
''Intenta enterarte de algo más sobre él.'' | ''Intenta enterarte de algo más sobre él.'' |
Revisión de 17:58 13 dic 2008
Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadora |
Tabla de contenidos |
Definición
Una progresión aritmética es una sucesión de números en la que cada término se obtiene sumando al anterior una cantidad fija, , que llamaremos diferencia.
Por ejemplo:
es una progresión aritmética con diferencia d=4.
Término general de una progresión aritmética
Término general de una progresión aritmética
Sean términos de una progresión aritmética de diferencia .
Entonces, se cumple que:
|
En efecto, razonando por inducción:
........................
|
Actividad Interactiva: Progresiones aritméticas
Actividad 1: Ejercicios de autoevaluación sobre progresiones aritméticas.
Actividad:
|
Suma de términos de una progresión aritmética
Suma de términos de una progresión aritmética
La suma de los n primeros términos de una progresión aritmética es:
|
El porqué de esta fórmula se deduce de la siguiente historia:
En un pequeño pueblo de Alemania, Brunswick, un día en la escuela el profesor manda sumar los cien primeros números naturales. El maestro quería unos minutos de tranquilidad... pero transcurridos pocos segundos uno de los alumnos levanta la mano y dice tener la solución: los cien primeros números naturales suman 5.050. Y efectivamente, así era.
El profesor le preguntó ¿cómo lo has hecho? El niño le dijo: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101,... siempre suma 101 y hay 50 sumas, en total 50 * 101 = 5050. El profesor quedó tan impresionado que le regaló un libro de Aritmética.
Ese niño tenía 10 años y se llamaba Carl Friedrich Gaüss. Fue uno de los mas grandes matemáticos.
Intenta enterarte de algo más sobre él.
Gauss y el ajedrezEjercicios
Problemas 1. Comprueba que las sucesiones siguientes son progresiones aritméticas. Calcula la diferencia y el término general de cada una de ellas. a) 1, -1, -3, -5, -7,.... b) 2, 5, 8, 11, 14,.... c) -7, -5, -3, -1, 1,...Solución:
2. Si y , en una progresión aritmética, ¿cuánto vale ?
Solución:
3. Si y , calcular .
Solución:
4. Al excavar tierra para hacer un túnel se pagan 700€ por el primer metro y 95€ de aumento por cada metro sucesivo. ¿Cuánto se pagará por el décimo metro excavado? Calcular el total abonado por los 10 metros excavados.
Solución: |