Funciones: Crecimiento. Variación. Máximos y mínimos

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:38 15 ene 2009
Coordinador (Discusión | contribuciones)
(Máximos y mínimos)
← Ir a diferencia anterior
Revisión de 09:40 15 ene 2009
Coordinador (Discusión | contribuciones)
(Ejercicios)
Ir a siguiente diferencia →
Línea 15: Línea 15:
{{p}} {{p}}
===Ejercicios=== ===Ejercicios===
-{{ejercicio+{{Ejercicios de crecimiento y puntos extremos}}
-|titulo=Ejercicios: ''Crecimiento. Máximos y mínimos''+
-|cuerpo=+
-{{ejercicio_cuerpo+
-|enunciado=+
-'''1. '''En la siguiente función, indica los intervalos de crecimiento y decrecimiento, así como los máximos y mínimos.+
-<center>[[Imagen:funcion1d.png]]</center>+
-|sol=+
-En <math>[-4, -2]\;\!</math> la función es decreciente, en <math>[-2, 0]\;\!</math> es creciente, en <math>[0, 3]\;\!</math> es decreciente y en <math>[3, 5]\;\!</math> creciente.<br>+
-Tiene un máximo en (0,5) y mínimos en (-2,-3) y (3,-4).+
-}}+
-}}+
[[Categoría: Matemáticas]][[Categoría: Funciones]] [[Categoría: Matemáticas]][[Categoría: Funciones]]

Revisión de 09:40 15 ene 2009

Crecimiento y variación

  • Una función es creciente en un intervalo I cuando al aumentar la variable independiente x\; en ese intervalo, aumenta la variable dependiente y\;.
\forall x_1,x_2 \in I, x_1<x_2 \Rightarrow f(x_1)<f(x_2)
  • Una función es decreciente en un intervalo cuando al aumentar la variable independiente x\; en ese intervalo, disminuye la variable dependiente y\;.
\forall x_1,x_2 \in I, x_1<x_2 \Rightarrow f(x_1)>f(x_2)
  • Una función es constante en un intervalo cuando al aumentar la variable independiente x\; en ese intervalo, la variable dependiente y\; no varía, siempre toma un mismo valor k\;.
f(x)=k \ , \forall x \in I

Se llama variación de una función f\; en un intervalo [a,b]\;, a lo que varía la variable dependiente de un extremo a otro del intervalo:

\Delta f_{[a,b]}=f(b)-f(a)\;

Máximos y mínimos

  • Una función y = f(x)\; tiene un máximo relativo en un punto (x_o,y_o)\; cuando y_o\; es mayor que los valores que toma la variable y\; en un intervalo entorno al punto.
  • Una función y = f(x)\; tiene un mínimo relativo en un punto (x_o,y_o)\; cuando y_o\; es menor que los valores que toma la variable y\; en un intervalo entorno al punto.

Ejercicios

ejercicio

Ejercicios resueltos: Crecimiento. Máximos y mínimos


1. En la siguiente función, indica los intervalos de crecimiento y decrecimiento, así como los máximos y mínimos relativos.

Imagen:funcion1d.png
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda