Números naturales

De Wikipedia

(Diferencia entre revisiones)
Revisión de 18:36 6 jun 2016
Coordinador (Discusión | contribuciones)
(Wiris)
← Ir a diferencia anterior
Revisión de 19:16 5 sep 2016
Coordinador (Discusión | contribuciones)
(Números naturales)
Ir a siguiente diferencia →
Línea 12: Línea 12:
<center>[[Imagen:recta_naturales.png|500px]]</center> <center>[[Imagen:recta_naturales.png|500px]]</center>
{{p}} {{p}}
-{{Video2+{{Video_enlace
|titulo1=Números naturales. Números primos |titulo1=Números naturales. Números primos
|duracion=17´ |duracion=17´
-|url1=http://maralboran.org/web_ma/videos/naturales/naturales.htm+|url1=http://www.rtve.es/alacarta/videos/mas-por-menos/aventura-del-saber-serie-mas-menos-numeros-naturales-numeros-primos/1296603/
 +|url3=http://maralboran.org/web_ma/videos/naturales/naturales.htm
|titulo2=Acceso por red TIC |titulo2=Acceso por red TIC
|url2=http://c0/helvia/aula/archivos/repositorio//0/113/html/index.htm |url2=http://c0/helvia/aula/archivos/repositorio//0/113/html/index.htm
-|sinopsis=Los números que nos sirven para contar, los números naturales, uno de los más viejos inventos de la Humanidad. ¿Cómo serían nuestras vidas sin la existencia de estos números?... Desde los pitagóricos, que los consideraron como el principio y la explicación de todo el Universo, hasta nuestros días estos números han ejercido un poderoso influjo sobre los matemáticos de todas las épocas. Uno de los campos que ha tenido en jaque a los grandes matemáticos es el de los números primos; una auténtica caja de sorpresas. Aún hoy, utilizando potentes ordenadores, no se han podido demostrar algunas de las conjeturas formuladas sobre estos números hace más de doscientos años. Veremos algunas de ellas y descubriremos una de las aplicaciones más extrañas de los números primos en la actualidad, su utilización en criptografía. +|sinopsis=Los números que nos sirven para contar, los números naturales, uno de los más viejos inventos de la Humanidad. ¿Cómo serían nuestras vidas sin la existencia de estos números?... Desde los pitagóricos, que los consideraron como el principio y la explicación de todo el Universo, hasta nuestros días estos números han ejercido un poderoso influjo sobre los matemáticos de todas las épocas. Uno de los campos que ha tenido en jaque a los grandes matemáticos es el de los números primos; una auténtica caja de sorpresas. Aún hoy, utilizando potentes ordenadores, no se han podido demostrar algunas de las conjeturas formuladas sobre estos números hace más de doscientos años. Veremos algunas de ellas y descubriremos una de las aplicaciones más extrañas de los números primos en la actualidad, su utilización en criptografía. [[Más por menos: Números naturales. Números primos|(Ver resumen detallado)]]
}} }}
{{p}} {{p}}
 +
==Operaciones con naturales== ==Operaciones con naturales==
===Suma y multiplicación de naturales=== ===Suma y multiplicación de naturales===

Revisión de 19:16 5 sep 2016

Tabla de contenidos

Números naturales

El conjunto de los números naturales es \mathbb{N}=\left \lbrace 0,\ 1 ,\ 2,\ 3, \cdots \right \rbrace. Son infinitos y sirven para contar (números cardinales: 1, 2, 3, ...) o para ordenar (números ordinales: 1º, 2º, 3º, ...).

Podemos representarlos en una recta:

Operaciones con naturales

Suma y multiplicación de naturales

La suma (o adición) y la multiplicación (o producto) de dos números naturales es otro número natural. Por eso se dice que estas dos operaciones son leyes de composición interna.

Resta y división de naturales

La resta (o substracción)y la división (o cociente) de dos números naturales no siempre es otro número natural. Por eso se dice que estas dos operaciones son leyes de composición externa.

Propiedades de la suma y el producto de naturales

La suma y la multiplicación cumplen las siguientes propiedades:

  • Propiedad asociativa:
(a+b)+c=a+(b+c)\,\!
(a \cdot b)\cdot c=a \cdot(b \cdot c)
  • Propiedad conmutativa:
a+b=b+a\,\!
a \cdot b=b \cdot a
  • Propiedad distributiva:
a \cdot (b+c)=a \cdot b+a \cdot c


Sacar factor común

La propiedad distributiva sirve para simplificar expresiones sacando factor común. Veamos un ejemplo

ejercicio

Ejemplo: Sacar factor común


Saca factor común en la expresión 16xyz-24xz+4x\;\!

División de naturales

La división puede verse como un reparto de un número de elementos (dividendo) en un número de partes iguales (divisor), que da como resultado el número de elementos que corresponden a cada parte (cociente) y un posible número de elementos sobrantes (resto). Si el resto es cero la división se llama exacta, si no, se llama entera.

ejercicio

Algoritmo de la división


En toda división, el dividendo es igual al divisor por el cociente más el resto.

D=d \cdot c + r

donde D\;\! es el dividendo, d\;\! el divisor, c\;\! el cociente y r\;\! el resto.

Potenciación de naturales

Una potencia de base a\;\! y exponente n\;\! consiste en multiplicar n\;\! veces la base a\;\!.

a^n =a \cdot a \cdots a\;\!

Una potencia es un modo abreviado de escribir un producto de un número por sí mismo.

En la expresión de la potencia de un número consideramos dos partes:

  • La base es el número que se multiplica por sí mismo
  • El exponente es el número que indica las veces que la base aparece como factor.

Una potencia se escribe tradicionalmente poniendo el número base de tamaño normal y junto a él, arriba a su derecha se pone el exponente, de tamaño más pequeño.

Para nombrar o leer una potencia decimos primeramente el número base, después decimos lo referente al exponente. Cuando el exponente es 2 se dice "elevado al cuadrado", cuando el exponente es 3 se dice "elevado al cubo". En los demás casos se dice "elevado a la cuarta, quinta, sexta... potencia".

ejercicio

Actividad Interactiva: Potencias


Actividad 1. Potencia de un número natural.

Propiedades de las potencias de naturales

a^0=1\,\!  a^m \cdot a^n=a^{n+m}  \cfrac{a^m}{a^n}=a^{m-n}\,\!  (a^m)^n=a^{m \cdot n}

(a^n \cdot b^n)=(a \cdot b)^n  \cfrac{a^n}{b^n}=\left ( \frac{a}{b} \right )^n\,\!



ejercicio

Actividad Interactiva: Propiedades de las potencias


Actividad 1. Propiedades de las potencias de números naturales.
Actividad 2. Autoevaluación.
Actividad 3. Juegos.

Jerarquía de las operaciones con naturales

A la hora de operar con números naturales seguiremos las siguientes pautas:

Se efectúan primero el contenido de los paréntesis. De las operaciones, la de mayor prioridad es la potenciación, seguida de la multiplicación y las división y, para terminar, la suma y la resta. Si hay paréntesis anidados, se efectúan de dentro hacia fuera.

ejercicio

Actividad Interactiva: Jerarquía de las operaciones


1. Operaciones combinadas.


Ejercicios y problemas

Ejercicios

ejercicio

Ejercicios


1. Calcula:

a) 7+3\cdot5-2=
b) (7+3)\cdot5-2=
c) 7+3\cdot(5-2)=
d) (7+3)\cdot(5-2)=

2. Simplifica:

a) (x^2)^5\,\! b) x^3 \cdot x^4 \cdot x^2 c) (x^3)^2 \cdot (x^2)^4 \cdot x

3. Simplifica:

a) \cfrac{3^5}{3^2} b) \cfrac{5^4}{5^2} c) \cfrac{2^3 \cdot 5^4}{2 \cdot 5^2}

4. Extrae factor común:

a) -18a+20a-10a\,\! b) 15x-60x^2\,\! c) 5ba^2-3ab+2ba^3\;\!

Problemas

ejercicio

Problemas


1. Al dividir 453 entre 32 se obtiene 5 de resto. ¿Cúal es el divisor?
2. Una empresa compra una máquina de café por 6.000 €. Cada mes se gasta 100 € en mantenimiento pero obtiene 350 € por la venta de café. Al cabo de 2 años y medio la vende por 4920 €. ¿Qué beneficio mensual le ha aportado la máquina?

Calculadora

Suma, resta, multiplicación y división

Calculadora

Calculadora: Suma, resta, multiplicación y división


Para sumar, restar, multiplicar y dividir usaremos las teclas Suma, Resta, Multiplicación y División.

Paréntesis

Calculadora

Calculadora: Paréntesis


Para abrir y cerrar paréntesis usaremos las teclas Abre paréntesis yCierra paréntesis.

Potencias

Calculadora

Calculadora: Potencias


Para calcular potencias usaremos la tecla Elevado a.

Wiris

ejercicio

WIRIS: Operaciones con números naturales


Revisa el manual de WIRIS para ver ejemplos de operaciones aritméticas:

Y utiliza el editor para calcular:

\cfrac{14 \cdot(5-3)^2}{9-2}

Comprueba el resultado también con tu calculadora. (Solución: 8)

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda