Números racionales (3ºESO Académicas)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 10:25 5 sep 2016
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 10:26 5 sep 2016
Coordinador (Discusión | contribuciones)
(Ordenación de fracciones)
Ir a siguiente diferencia →
Línea 40: Línea 40:
{{p}} {{p}}
==Ordenación de fracciones== ==Ordenación de fracciones==
-{{Ordenar o comparar fracciones}}+{{Ordenar fracciones}}
{{p}} {{p}}
 +
==Ejercicios== ==Ejercicios==

Revisión de 10:26 5 sep 2016

(pág. 12-13)

Tabla de contenidos

Números naturales

El conjunto de los números naturales es:

\mathbb{N}=\left \lbrace 1 ,\ 2,\ 3, \cdots \right \rbrace

Se trata de un conjunto con infinitos elementos y sirven para:

  • Contar (números cardinales: 1, 2, 3, ...).
  • Ordenar (números ordinales: 1º, 2º, 3º, ...).
  • Identificar y diferenciar los distintos elementos de un conjunto.







Números enteros

Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde a un número menor hay que restarle uno mayor. Nos vemos obligados a ampliar el concepto de números naturales, introduciendo un nuevo conjunto numérico llamado números enteros.

El conjunto de los números enteros

\mathbb{Z}=\left \lbrace -3, -2,-1,\ 0,\ 1 ,\ 2,\ 3, \cdots \right \rbrace

Está formado por:

  • El conjunto de los números naturales o enteros positivos : \mathbb{Z}^+=\mathbb{N}=\left \lbrace 1 ,\ 2,\ 3, \cdots \right \rbrace.
  • Sus opuestos, los enteros negativos: \mathbb{Z}^-=\left \lbrace \cdots, -1 ,\ -2,\ -3, \cdots \right \rbrace.
  • El cero (0).

Como consecuencia, \mathbb{N} \subset \mathbb{Z}, que se lee: "el conjunto de los números naturales está incluido en el conjunto de los números enteros".

Números racionales

Los números enteros son útiles para contar u ordenar objetos, pero hay veces en las que es necesario dividir la unidad en partes iguales para poder expresar una medida: la mitad, la tercera parte, etc. Estas medidas se expresan por medio de fracciones.

  • Una fracción es una expresión de la forma \frac{a}{b}\;, o bien, a/b\;, donde a\; y b\; son números enteros, siendo b \ne 0 \;.
  • Al número a\; lo llamaremos numerador y al número b\;, denominador.



El valor de una fracción es el resultado de dividir numerador entre denominador. Según su valor, una fracción pueden ser:

  • Un número entero: Si el resultado de hacer la división es exacto.
  • Un número fraccionario: Si el resultado de hacer la división no es exacto.



El conjunto de los números racionales es el conjunto de todas las fracciones:

\mathbb{Q} = \lbrace \cfrac {a}{b}\; / \; a,b \in \mathbb{Z}, \, b \ne 0 \rbrace

Representación de fracciones en la recta numérica

ejercicio

Ejemplo: Representación de fracciones en la recta numérica


Representa las fracciones:
-\cfrac{5}{2}, -\cfrac{1}{2}, \cfrac{10}{7}, \cfrac{23}{5}

Fracciones equivalentes

Plantilla:Fracciones equivalentes

Simplificación de fracciones

  • Simplificar una fracción es sustituirla por otra equivalente con el numerador y denominador menores que los de partida.
  • Cuando una fracción no se puede simplificar se dice que es irreducible.

ejercicio

Procedimiento: Simplificación


  • Para simplificar fracciones se divide numerador y denominador por un mismo número, distinto de 0 y 1. Este proceso se puede repetir hasta hacer la fracción irreducible.
  • Si queremos hacer la fracción irreducible en un solo paso debemos dividir numerador y denominador por el m.c.d. de ambos.

La simplificación de fracciones me proporciona un método para saber si dos fracciones son equivalentes.

ejercicio

Procedimiento


Si al simplificar dos fracciones se obtiene la misma fracción irreducible, entonces las dos fracciones son equivalentes.

Ordenación de fracciones

Una forma de comparar fracciones consistía en calcular su valor numérico, efectuando la división. A continuación vamos a ver otras formas distintas de hacerlo. Distinguiremos los siguientes casos:

Caso 1: Las fracciones tienen numeradores o denominadores iguales

En algunos casos es fácil comparar dos fracciones sin necesidad de hacer la división. Esto será posible si ambas fracciones tienen los numeradores o denominadores iguales.

ejercicio

Comparar fracciones con numeradores o denominadores iguales


  • De dos fracciones con el mismo denominador, es mayor la de mayor numerador.
  • De dos fracciones con el mismo numerador, es mayor la de menor denominador.

Caso 2: Las fracciones tienen numeradores y denominadores distintos

Veamos ahora un procedimiento para los casos en que no sean iguales ni los numeradores ni los denominadores. Lo que haremos será reducirlas a común denominador.

En la animación anterior, cuando los denominadores son distintos, no podemos comparar las piezas coloreadas de verde, pues son de tamaños distintos. Al cambiar los denominadores por 12, sí podemos hacer la comparación. Además, 12 no es un denominador cualquiera, es el mínimo común múltiplo de 3 y 4. Se podría usar cualquier otro múltiplo común, pero lo normal es usar el menor posible para no trabajar con números muy grandes.

ejercicio

Ordenar fracciones


  • Para ordenar fracciones con distinto denominador debemos primero reducirlas a común denominador.
  • Una vez reducidas a común denominador, será mayor la de mayor numerador.

ejercicio

Ejemplo: Ordenar fracciones


Ordena las siguientes fracciones: \cfrac{4}{6} \, , \ \cfrac{3}{4}  \, \ y \ \cfrac{1}{2}

Ejercicios

ejercicio

Ejercicios propuestos: Números racionales


(Pág. 12)
1, 2, 5
3, 4


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda