Plantilla:Función inversa (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 12:11 17 may 2017
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 12:12 17 may 2017
Coordinador (Discusión | contribuciones)
(Obtención de la expresión analítica de la función inversa)
Ir a siguiente diferencia →
Línea 44: Línea 44:
{{p}} {{p}}
{{Video_enlace_khan {{Video_enlace_khan
-|titulo1=Funciones inversas +|titulo1=Ejemplo 1
|duracion=11'55" |duracion=11'55"
-|sinopsis=Cálculo de la función inversa. Propiedades de su gráfica.+|sinopsis=1 ejemplo sobre el cáculo de la función inversa y su interpretación gráfica.
|url1=https://www.youtube.com/watch?v=zdQr2IWmtfw |url1=https://www.youtube.com/watch?v=zdQr2IWmtfw
}} }}
{{p}} {{p}}
{{Video_enlace_khan {{Video_enlace_khan
-|titulo1=Ejemplos 1+|titulo1=Ejemplos 2
|duracion=6'53" |duracion=6'53"
|sinopsis=2 ejemplos sobre el cáculo de la función inversa y su interpretación gráfica. |sinopsis=2 ejemplos sobre el cáculo de la función inversa y su interpretación gráfica.
Línea 58: Línea 58:
{{p}} {{p}}
{{Video_enlace_unicoos {{Video_enlace_unicoos
-|titulo1=Ejemplos 2+|titulo1=Ejemplos 3
|duracion=13'30" |duracion=13'30"
|sinopsis=Algunos ejemplos sobre el cáculo de la función inversa y sobre la composición de funciones. |sinopsis=Algunos ejemplos sobre el cáculo de la función inversa y sobre la composición de funciones.
Línea 65: Línea 65:
{{p}} {{p}}
{{Video_enlace_julioprofe {{Video_enlace_julioprofe
-|titulo1=Ejemplo 3+|titulo1=Ejemplo 4
|duracion=8'22" |duracion=8'22"
|sinopsis=Obtención de la función inversa de <math>f(x)=\cfrac{2x+3}{5-x}\;</math> previa demostración de su inyectividad. |sinopsis=Obtención de la función inversa de <math>f(x)=\cfrac{2x+3}{5-x}\;</math> previa demostración de su inyectividad.

Revisión de 12:12 17 may 2017

Función inversa o recíproca

Si f\; es una función que lleva elementos de X\; en elementos de Y\;, en ciertas condiciones será posible definir la aplicación f^{-1}\; que realice el camino de vuelta de Y\; a X\;. En ese caso diremos que f^{-1}\; es la función inversa o recíproca de f\;. Formalmente:

Sea f\; una función real inyectiva, cuyo dominio sea el conjunto X\; y cuya imagen sea el conjunto Y\; (en tal caso f:X \rightarrow Y es biyectiva). Entonces, la función recíproca o inversa de f\;, denotada f^{-1}\;, es la función de dominio Y\; e imagen X\; definida por la siguiente regla:

f^{-1}(y) = x \Leftrightarrow{}f(x) = y \,\!

ejercicio

Propiedades


Sea f \colon X \rightarrow Y una función y f^{-1}\; su inversa:

  • Las gráficas de f\; y f^{-1}\; son simétricas respecto de la recta y=x\;.
  • La función f^{-1}\;, al igual que f\;, es una función biyectiva, que queda determinada de modo único por f\; y que cumple:
a) f^{-1} \circ f = I_X
b) f \circ f^{-1}=I_Y

donde I_X\; e I_Y\; son las funciones identidad en X\; e Y\; respectivamente.

Una función  ƒ y su inversa o recíproca ƒ –1. Como ƒ aplica a en 3, la inversa ƒ –1 lleva 3 de vuelta en a.
Aumentar
Una función ƒ y su inversa o recíproca ƒ –1. Como ƒ aplica a en 3, la inversa ƒ –1 lleva 3 de vuelta en a.

Obtención de la expresión analítica de la función inversa

ejercicio

Procedimiento


Para intentar hallar la expresión analítica de la inversa de y=f(x):

  1. Se despeja (si se puede) la variable "x" para ponerla en función de la variable "y".
  2. Se intercambian las dos incógnitas (donde aparece "x" se pone "y" y viceversa).
  3. La expresión resultante es la de la función inversa de f.

ejercicio

Ejemplo: Función inversa


Halla la función inversa de la función f:\mathbb{R}\to\mathbb{R} definida por f(x)=x^2\;:

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda