Ecuaciones de segundo grado

De Wikipedia

(Diferencia entre revisiones)
Revisión de 11:02 12 oct 2007
Coordinador (Discusión | contribuciones)
(Resolución de problemas mediante ecuaciones de segundo grado)
← Ir a diferencia anterior
Revisión de 11:03 12 oct 2007
Coordinador (Discusión | contribuciones)
(Resolución de problemas mediante ecuaciones de segundo grado)
Ir a siguiente diferencia →
Línea 166: Línea 166:
}} }}
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Actividad 2:''' Quiero rodear una parcela de <math>750 m^2</math> y 110 m de perímetro, con una valla. ¿Cómo debo cortar los 110 m de valla para rodearla?+|enunciado='''Actividad 2:''' Quiero rodear una parcela de <math>750 m^2 \;\!</math> y <math>110 m \;\!</math> de perímetro, con una valla. ¿Cómo debo cortar los 110 m de valla para rodearla?
|actividad= |actividad=

Revisión de 11:03 12 oct 2007

Tabla de contenidos

Ecuación de segundo grado

Una ecuación de segundo grado con una incógnita es aquella que se puede expresar de la forma:

ax^2+bx+c=0, \quad a\ne 0

que llamaremos forma general.

ejercicio

Ejemplo: Ecuación de segundo grado


Pasa a forma general la ecuación:

3x-2x^2+5=-4x^2+3-x\;\!

Resolución de la ecuación de segundo grado

ejercicio

Fórmula de la ecuación de segundo grado


Las soluciones de la ecuación de segundo grado son:

x=\cfrac{-b \pm \sqrt {b^2-4ac}}{2a}

donde el signo (\pm) significa que una solución se obtiene con el signo (+)\;\! y otra con el signo (-)\;\!.

ejercicio

Ejemplo: Resolución de la ecuación de segundo grado


Ejemplos de ecuaciones de segundo grado resueltas.

ejercicio

Actividad Interactiva: Resolución de una ecuación de segundo grado


Actividad 1: Resuelve las siguientes ecuaciones de segundo grado.

Discriminante de una ecuación de segundo grado

Llamamos discriminante de una ecuación de segundo grado a:

\triangle = b^2-4ac

por tanto:

  • Si \triangle <0 la ecuación no tiene solución.
  • Si \triangle >0 la ecuación tiene dos soluciones.
  • Si \triangle =0 la ecuación tiene una solución (doble).

ejercicio

Actividad Interactiva: Discriminante de una ecuación de segundo grado


Actividad 1: Calcula el discriminante de las siguientes ecuaciones de segundo grado.

Ecuaciones de segundo grado incompletas

Una ecuación de segundo grado ax^2+bx+c=0\;\! es incompleta, si ocurre uno de los siguientes casos:

  • b=0\;\!: (ax^2+c=0\;\!)
En este caso las soluciones se obtienen despejando x:
ax^2+c=0; \quad ax^2=-c; \quad x=-\cfrac{c}{a};\quad x=\pm \sqrt {-\cfrac{c}{a}}
  • c=0\;\!: (ax^2+bx=0\;\!)
En este caso, sacando factor común e igualando a cero cada factor:
ax^2+bx =0; \quad x \cdot (ax+b)=0 \quad \left \{ \begin{matrix} x_1=0 \\ x_2=-\cfrac{b}{a} \end{matrix} \right .

ejercicio

Ejemplo: Ecuaciones de segundo grado incompletas


Ejemplos de ecuaciones de segundo grado incompletas resueltas.

Resolución de problemas mediante ecuaciones de segundo grado

ejercicio

Actividades Interactivas: Planteamiento y resolución de ecuaciones de segundo grado


Actividad 1: Un campo de fútbol deberá ocupar una superficie rectangular de 7.500 m², siendo el largo 25 m mayor que el ancho. Halla las dimensiones del campo.
Actividad 2: Quiero rodear una parcela de 750 m^2 \;\! y 110 m \;\! de perímetro, con una valla. ¿Cómo debo cortar los 110 m de valla para rodearla?

Ejercicios

ejercicio

Actividades Interactivas: Ejercicios de autoevaluación


Actividad 1: El discriminante.
Actividad 2: Resuelve ecuaciones de segundo grado.
Actividad 3: Soluciones de una ecuación de segundo grado.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda