Potencias

De Wikipedia

(Diferencia entre revisiones)
Revisión de 16:05 17 oct 2007
Coordinador (Discusión | contribuciones)
(Ejercicios)
← Ir a diferencia anterior
Revisión de 16:05 17 oct 2007
Coordinador (Discusión | contribuciones)
(Ejercicios)
Ir a siguiente diferencia →
Línea 289: Línea 289:
}} }}
{{p}} {{p}}
-{{AI2|titulo=Actividades Interactivas:''Propiedades de las potencias''+{{AI2|titulo=Actividades Interactivas: ''Propiedades de las potencias''
|cuerpo= |cuerpo=
{{ai_cuerpo {{ai_cuerpo

Revisión de 16:05 17 oct 2007

Tabla de contenidos

Potencias de naturales

Una potencia de base a\;\! y exponente n\;\! consiste en multiplicar n\;\! veces la base a\;\!.

a^n =a \cdot a \cdots a\;\!

Una potencia es un modo abreviado de escribir un producto de un número por sí mismo.

En la expresión de la potencia de un número consideramos dos partes:

  • La base es el número que se multiplica por sí mismo
  • El exponente es el número que indica las veces que la base aparece como factor.

Una potencia se escribe tradicionalmente poniendo el número base de tamaño normal y junto a él, arriba a su derecha se pone el exponente, de tamaño más pequeño.

Para nombrar o leer una potencia decimos primeramente el número base, después decimos lo referente al exponente. Cuando el exponente es 2 se dice "elevado al cuadrado", cuando el exponente es 3 se dice "elevado al cubo". En los demás casos se dice "elevado a la cuarta, quinta, sexta... potencia".

ejercicio

Actividad Interactiva: Potencias


Actividad 1. Potencia de un número natural.

Propiedades de las potencias de naturales

a^0=1\,\!  a^m \cdot a^n=a^{n+m}  \cfrac{a^m}{a^n}=a^{m-n}\,\!  (a^m)^n=a^{m \cdot n}

(a^n \cdot b^n)=(a \cdot b)^n  \cfrac{a^n}{b^n}=\left ( \frac{a}{b} \right )^n\,\!



ejercicio

Actividad Interactiva: Propiedades de las potencias


Actividad 1. Propiedades de las potencias de números naturales.
Actividad 2. Autoevaluación.
Actividad 3. Juegos.

Potencias de enteros

Las potencias de enteros cumplen las mismas propiedades que las potencias de números naturales.

Potencia de base negativa:
Al elevar un número negativo a una potencia, el resultado es positivo si el exponente es par y negativo si es impar.

ejercicio

Actividad Interactiva: Potencias de números enteros


Actividad 1. Potencias de base negativa.

Potencias de fracciones

Las potencias con números racionales cumplen las mismas propiedades que con números naturales y enteros.

Tan sólo queda añadir el siguiente caso:

Potencias de exponente negativo

Sea n \in \mathbb{N}, se define la potencia de exponente negativo como:

a^{-n}=\cfrac{1}{a^n}

Como consecuencia, \left ( \cfrac{a}{b} \right )^{-n}=\left ( \cfrac{b}{a} \right )^{n}.

ejercicio

Actividad Interactiva: Potencias de exponente negativo


Actividad 1. Potencias de exponente negativo.
Actividad 2. Autoevaluación.

Ejercicios

ejercicio

Actividad Interactiva: Operaciones con potencias


Actividad 1. Autoevaluación: Operaciones con potencias de enteros y racionales.

ejercicio

Actividades Interactivas: Propiedades de las potencias


Actividad 1: Producto de potencias.
Actividad 2: Cociente de potencias.
Actividad 3: Potencia de un producto.
Actividad 4: Potencia de un cociente.
Actividad 5: Potencia de una potencia.
ejercicio

Ejercicios: Potencias de naturales


1. Simplifica:

a) (x^2)^5\,\! b) x^3 \cdot x^4 \cdot x^2 c) (x^3)^2 \cdot (x^2)^4 \cdot x

2. Simplifica:

a) \cfrac{3^5}{3^2} b) \cfrac{5^4}{5^2} c) \cfrac{2^3 \cdot 5^4}{2 \cdot 5^2}

ejercicio

Ejercicios: Potencias de enteros


1. Calcula:

a) (-2)^3 \,\! b) -2^4 \,\! c) (-2)^6 \,\! d) (-1)^{10} \,\! e) (-1)^{11}\,\! f) -2^0 \,\!

ejercicio

Ejercicios: Potencias de fracciones


1. Simplifica y expresa en forma de fracción:

a) \cfrac{-5^2}{5^5} b) \cfrac{0,001}{10^2} c) \cfrac{(a^3 \cdot b^{-2})^2}{a^4 \cdot b^{-3}}

2. Simplifica:

a) \left ( \cfrac{-1}{5} \right )^3 b) \left [ \left ( \cfrac{-1}{3} \right )^{-2} \right ]^2 c) \left ( \cfrac{-1}{3} \right )^3 \cdot \left ( \cfrac{1}{-3} \right )^{-2}

3. Calcula utilizando las propiedades de las potencias:

a)\ \frac{6^3.8^4}{3^0.3^3.2^4.2^2} \quad b)\ \frac{25^3.3^{-2}}{15^4.3^{-3}.5^4} \quad c)\ \frac{10^3.16.5^2}{100.8.25}


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda