Números irracionales

De Wikipedia

(Diferencia entre revisiones)
Revisión de 22:31 11 nov 2007
Coordinador (Discusión | contribuciones)
(Números irracionales)
← Ir a diferencia anterior
Revisión de 23:02 11 nov 2007
Coordinador (Discusión | contribuciones)
(Números irracionales)
Ir a siguiente diferencia →
Línea 14: Línea 14:
<math>\pi=3.141592654..., e=2.718281..., \varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618033988... ,\sqrt{2}=1.414213...,</math> <math>\pi=3.141592654..., e=2.718281..., \varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618033988... ,\sqrt{2}=1.414213...,</math>
</center> </center>
-{{Caja|contenido=Vídeos: [http://maralboran.org/web_ma/videos/historiaspi/historiasdepi.html Historias de pi];[http://www.juntadeandalucia.es/averroes/centros-tic/29009909/helvia/aula/archivos/repositorio/html/90/index.htm El número e]; [http://maralboran.org/web_ma/videos/ladivinaproporcion/ladivinaproporcion.html Phi y la divina proporción]; }}+{{Video
 +|titulo=El número e
 +|enunciado=Documental sobre la historia del número e
 +|video=
 +<center><iframe>
 +url=http://www.juntadeandalucia.es/averroes/centros-tic/29009909/helvia/aula/archivos/repositorio/html/90/index.htm
 +width=100%
 +height=650
 +name=myframe
 +</iframe></center>
 +<center>[http://www.juntadeandalucia.es/averroes/centros-tic/29009909/helvia/aula/archivos/repositorio/html/90/index.htm '''Shift-Click''' aquí si no se ve bien la escena]</center>
 +}}
 +{{p}}
 +{{Video
 +|titulo=El número pi
 +|enunciado=Documental sobre la historia del número pi
 +|video=
 +<center><iframe>
 +url=http://maralboran.org/web_ma/videos/historiaspi/historiasdepi.html
 +width=100%
 +height=650
 +name=myframe
 +</iframe></center>
 +<center>[http://maralboran.org/web_ma/videos/historiaspi/historiasdepi.html '''Shift-Click''' aquí si no se ve bien la escena]</center>
 +}}
 +{{p}}
 +{{Video
 +|titulo=La divina proporción
 +|enunciado=Documental sobre la historia del número Phi y la divina proporción.
 +|video=
 +<center><iframe>
 +url=http://maralboran.org/web_ma/videos/ladivinaproporcion/ladivinaproporcion.html
 +width=100%
 +height=650
 +name=myframe
 +</iframe></center>
 +<center>[http://maralboran.org/web_ma/videos/ladivinaproporcion/ladivinaproporcion.html '''Shift-Click''' aquí si no se ve bien la escena]</center>
 +}}
{{p}} {{p}}
Vamos a repasar los distintos conjuntos numéricos vistos hasta ahora: Vamos a repasar los distintos conjuntos numéricos vistos hasta ahora:

Revisión de 23:02 11 nov 2007

Números irracionales

A los números cuya expresión decimal tiene infinitas cifras no periódicas , se les llama números irracionales. Al conjunto de tales números lo representaremos con la letra \mathbb{I}.

Son números irracionales:

\pi=3.141592654..., e=2.718281..., \varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618033988... ,\sqrt{2}=1.414213...,

ejercicio

Video: El número e ({{{duracion}}})


ejercicio

Video: El número pi ({{{duracion}}})


ejercicio

Video: La divina proporción ({{{duracion}}})


Vamos a repasar los distintos conjuntos numéricos vistos hasta ahora:

ejercicio

Actividad Interactiva: Números irracionales


Actividad 1. Conjuntos numéricos.

ejercicio

Proposición


El número \sqrt{2} es irracional.

Representación de números irracionales

En la siguiente actividad vamos a ver algunos números irracionales importantes y su representación en la recta real.

ejercicio

Actividades Interactivas: Representación de números irracionales


1. Representación del número \sqrt{2}.
2. Representación del número de oro \phi=\cfrac{1+\sqrt{5}}{2}.
3. Representación de otras raíces cuadradas.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda